These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24579628)

  • 1. Manipulation of a two-photon pump in superconductor-semiconductor heterostructures.
    Baireuther P; Orth PP; Vekhter I; Schmalian J
    Phys Rev Lett; 2014 Feb; 112(7):077003. PubMed ID: 24579628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical spin squeezing: bright beams as high-flux entangled photon sources.
    Beduini FA; Mitchell MW
    Phys Rev Lett; 2013 Oct; 111(14):143601. PubMed ID: 24138238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon emission from a superlattice-based superconducting light-emitting structure.
    Bouscher S; Panna D; Jacovi R; Jabeen F; Schneider C; Höfling S; Hayat A
    Light Sci Appl; 2024 Jun; 13(1):135. PubMed ID: 38849330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental extraction of an entangled photon pair from two identically decohered pairs.
    Yamamoto T; Koashi M; Ozdemir SK; Imoto N
    Nature; 2003 Jan; 421(6921):343-6. PubMed ID: 12540894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic quantum state analyzed particle by particle.
    Beduini FA; Zielińska JA; Lucivero VG; de Icaza Astiz YA; Mitchell MW
    Phys Rev Lett; 2015 Mar; 114(12):120402. PubMed ID: 25860724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.
    Trotta R; Martín-Sánchez J; Daruka I; Ortix C; Rastelli A
    Phys Rev Lett; 2015 Apr; 114(15):150502. PubMed ID: 25933298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.
    Salazar LJ; Guzmán DA; Rodríguez FJ; Quiroga L
    Opt Express; 2012 Feb; 20(4):4470-83. PubMed ID: 22418206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Cooper pair transportation as a source of long-distance superconducting phase coherence.
    Isacsson A; Gorelik LY; Shekhter RI; Galperin YM; Jonson M
    Phys Rev Lett; 2002 Dec; 89(27):277002. PubMed ID: 12513233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Broadband Entanglement in Microwave Radiation from a Single Time-Varying Boundary Condition.
    Schneider BH; Bengtsson A; Svensson IM; Aref T; Johansson G; Bylander J; Delsing P
    Phys Rev Lett; 2020 Apr; 124(14):140503. PubMed ID: 32338986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically injected photon-pair source at room temperature.
    Boitier F; Orieux A; Autebert C; Lemaître A; Galopin E; Manquest C; Sirtori C; Favero I; Leo G; Ducci S
    Phys Rev Lett; 2014 May; 112(18):183901. PubMed ID: 24856696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling Two-Photon Entanglement via the Squeezing Spectrum of Light Traveling through Nanofiber-Coupled Atoms.
    Hinney J; Prasad AS; Mahmoodian S; Hammerer K; Rauschenbeutel A; Schneeweiss P; Volz J; Schemmer M
    Phys Rev Lett; 2021 Sep; 127(12):123602. PubMed ID: 34597106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity.
    Lähteenmäki P; Paraoanu GS; Hassel J; Hakonen PJ
    Nat Commun; 2016 Aug; 7():12548. PubMed ID: 27562246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent dynamics of a telecom-wavelength entangled photon source.
    Ward MB; Dean MC; Stevenson RM; Bennett AJ; Ellis DJ; Cooper K; Farrer I; Nicoll CA; Ritchie DA; Shields AJ
    Nat Commun; 2014; 5():3316. PubMed ID: 24548976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase manipulated two-mode entangled state from a phase-sensitive amplifier.
    Liu S; Lou Y; Jing J
    Opt Express; 2021 Nov; 29(24):38971-38978. PubMed ID: 34809269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic source of photon pairs.
    Horn R; Abolghasem P; Bijlani BJ; Kang D; Helmy AS; Weihs G
    Phys Rev Lett; 2012 Apr; 108(15):153605. PubMed ID: 22587254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics.
    Regelman DV; Mizrahi U; Gershoni D; Ehrenfreund E; Schoenfeld WV; Petroff PM
    Phys Rev Lett; 2001 Dec; 87(25):257401. PubMed ID: 11736603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating entangled microwave radiation over two transmission lines.
    Flurin E; Roch N; Mallet F; Devoret MH; Huard B
    Phys Rev Lett; 2012 Nov; 109(18):183901. PubMed ID: 23215279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source.
    Fattal D; Inoue K; Vucković J; Santori C; Solomon GS; Yamamoto Y
    Phys Rev Lett; 2004 Jan; 92(3):037903. PubMed ID: 14753911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entangled photon pairs from semiconductor quantum dots.
    Akopian N; Lindner NH; Poem E; Berlatzky Y; Avron J; Gershoni D; Gerardot BD; Petroff PM
    Phys Rev Lett; 2006 Apr; 96(13):130501. PubMed ID: 16711973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.