These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24579738)

  • 1. pH independent nano-optode sensors based on exhaustive ion-selective nanospheres.
    Xie X; Zhai J; Bakker E
    Anal Chem; 2014 Mar; 86(6):2853-6. PubMed ID: 24579738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores.
    Wygladacz K; Qin Y; Wroblewski W; Bakker E
    Anal Chim Acta; 2008 Apr; 614(1):77-84. PubMed ID: 18405684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode.
    Xie X; Zhai J; Crespo GA; Bakker E
    Anal Chem; 2014 Sep; 86(17):8770-5. PubMed ID: 25117492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres.
    Xu C; Wygladacz K; Retter R; Bell M; Bakker E
    Anal Chem; 2007 Dec; 79(24):9505-12. PubMed ID: 18001125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors.
    Ngeontae W; Xu C; Ye N; Wygladacz K; Aeungmaitrepirom W; Tuntulani T; Bakker E
    Anal Chim Acta; 2007 Sep; 599(1):124-33. PubMed ID: 17765072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium ion-selective fluorescent and pH independent nanosensors based on functionalized polyether macrocycles.
    Jarolímová Z; Vishe M; Lacour J; Bakker E
    Chem Sci; 2016 Jan; 7(1):525-533. PubMed ID: 29896344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring polythiophene cation-selective optodes for wide pH range sensing.
    Stelmach E; Kaczmarczyk B; Maksymiuk K; Michalska A
    Talanta; 2020 May; 211():120663. PubMed ID: 32070585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response Patterns of Chromoionophore-Based Bulk Optodes Containing Lipophilic Electrolytes: Toward Background-Independent pH-Sensing.
    Pokhvishcheva NV; Prozherin IS; Kalinichev AV; Peshkova MA
    ACS Sens; 2023 Aug; 8(8):3086-3094. PubMed ID: 37524060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-selective optode nanospheres as heterogeneous indicator reagents in complexometric titrations.
    Zhai J; Xie X; Bakker E
    Anal Chem; 2015 Mar; 87(5):2827-31. PubMed ID: 25622089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a microplate-format direct optode sensor for ultra-high-throughput environmental and wastewater monitoring of Pb
    Golcs Á; Dargó G; Balogh GT; Huszthy P; Tóth T
    Anal Chim Acta; 2021 Jul; 1167():338586. PubMed ID: 34049633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-based ion-selective optodes for continuous sensing: Reversible potassium ion monitoring.
    Kassal P; Sigurnjak M; Steinberg IM
    Talanta; 2019 Feb; 193():51-55. PubMed ID: 30368297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion selective optodes: from the bulk to the nanoscale.
    Xie X; Bakker E
    Anal Bioanal Chem; 2015 May; 407(14):3899-910. PubMed ID: 25604213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles of Fluorescent Conjugated Polymers: Novel Ion-Selective Optodes.
    Kłucińska K; Stelmach E; Kisiel A; Maksymiuk K; Michalska A
    Anal Chem; 2016 Jun; 88(11):5644-8. PubMed ID: 27136386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly durable double sol-gel layer ratiometric fluorescent pH optode based on the combination of two types of quantum dots and absorbing pH indicators.
    Hiruta Y; Yoshizawa N; Citterio D; Suzuki K
    Anal Chem; 2012 Dec; 84(24):10650-6. PubMed ID: 23163876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a potassium-selective optode for hydroponic nutrient solution monitoring.
    Bamsey M; Berinstain A; Dixon M
    Anal Chim Acta; 2012 Aug; 737():72-82. PubMed ID: 22769038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvatochromic Dyes as pH-Independent Indicators for Ionophore Nanosphere-Based Complexometric Titrations.
    Zhai J; Xie X; Bakker E
    Anal Chem; 2015 Dec; 87(24):12318-23. PubMed ID: 26595520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric response from ion-selective nanospheres with voltage-sensitive dyes.
    Xie X; Zhai J; Bakker E
    J Am Chem Soc; 2014 Nov; 136(47):16465-8. PubMed ID: 25387118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+-selective nanospheres: maximising response range and minimising response time.
    Ruedas-Rama MJ; Hall EA
    Analyst; 2006 Dec; 131(12):1282-91. PubMed ID: 17124535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Electrolyte Coextraction on the Response of Indicator-Based Cation-Selective Optodes.
    Kalinichev AV; Pokhvishcheva NV; Peshkova MA
    ACS Sens; 2020 Nov; 5(11):3558-3567. PubMed ID: 33074653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing calcium selective fluorimetric nanospheres.
    Kisiel A; Kłucińska K; Gniadek M; Maksymiuk K; Michalska A
    Talanta; 2015 Nov; 144():398-403. PubMed ID: 26452839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.