These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 24579821)
1. Shifting attention between the space of the body and external space: electrophysiological correlates of visual-nociceptive crossmodal spatial attention. Favril L; Mouraux A; Sambo CF; Legrain V Psychophysiology; 2014 May; 51(5):464-77. PubMed ID: 24579821 [TBL] [Abstract][Full Text] [Related]
2. Mapping nociceptive stimuli in a peripersonal frame of reference: evidence from a temporal order judgment task. De Paepe AL; Crombez G; Spence C; Legrain V Neuropsychologia; 2014 Apr; 56():219-28. PubMed ID: 24486423 [TBL] [Abstract][Full Text] [Related]
3. Investigating peri-limb interaction between nociception and vision using spatial depth. Vanderclausen C; Filbrich L; Alamia A; Legrain V Neurosci Lett; 2017 Jul; 654():111-116. PubMed ID: 28578106 [TBL] [Abstract][Full Text] [Related]
4. Shaping visual space perception through bodily sensations: Testing the impact of nociceptive stimuli on visual perception in peripersonal space with temporal order judgments. Filbrich L; Alamia A; Blandiaux S; Burns S; Legrain V PLoS One; 2017; 12(8):e0182634. PubMed ID: 28777824 [TBL] [Abstract][Full Text] [Related]
5. Investigating the spatial characteristics of the crossmodal interaction between nociception and vision using gaze direction. Filbrich L; Halicka M; Alamia A; Legrain V Conscious Cogn; 2018 Jan; 57():106-115. PubMed ID: 29207312 [TBL] [Abstract][Full Text] [Related]
6. Orienting attention in visual space by nociceptive stimuli: investigation with a temporal order judgment task based on the adaptive PSI method. Filbrich L; Alamia A; Burns S; Legrain V Exp Brain Res; 2017 Jul; 235(7):2069-2079. PubMed ID: 28374087 [TBL] [Abstract][Full Text] [Related]
7. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule. Sambo CF; Forster B J Cogn Neurosci; 2009 Aug; 21(8):1550-9. PubMed ID: 18767919 [TBL] [Abstract][Full Text] [Related]
8. Shielding cognition from nociception with working memory. Legrain V; Crombez G; Plaghki L; Mouraux A Cortex; 2013; 49(7):1922-34. PubMed ID: 23026759 [TBL] [Abstract][Full Text] [Related]
9. Seeing or not Seeing Where Your Hands Are. The Influence of Visual Feedback About Hand Position on the Interaction Between Nociceptive and Visual Stimuli. Manfron L; Legrain V; Filbrich L Multisens Res; 2020 Mar; 33(4-5):457-478. PubMed ID: 31648189 [TBL] [Abstract][Full Text] [Related]
10. Visuospatial attention and motor reaction in children: an electrophysiological study of the "Posner" paradigm. Perchet C; García-Larrea L Psychophysiology; 2000 Mar; 37(2):231-41. PubMed ID: 10731773 [TBL] [Abstract][Full Text] [Related]
11. Location and features of instructive spatial cues do not influence the time course of covert shifts of visual spatial attention. Müller MM Biol Psychol; 2008 Mar; 77(3):292-303. PubMed ID: 18083290 [TBL] [Abstract][Full Text] [Related]
12. From a Somatotopic to a Spatiotopic Frame of Reference for the Localization of Nociceptive Stimuli. De Paepe AL; Crombez G; Legrain V PLoS One; 2015; 10(8):e0137120. PubMed ID: 26317671 [TBL] [Abstract][Full Text] [Related]
13. Isolating event-related potential components associated with voluntary control of visuo-spatial attention. McDonald JJ; Green JJ Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037 [TBL] [Abstract][Full Text] [Related]
14. Unimodal and crossmodal extinction of nociceptive stimuli in healthy volunteers. Filbrich L; Blandiaux S; Manfron L; Farnè A; De Keyser R; Legrain V Behav Brain Res; 2019 Apr; 362():114-121. PubMed ID: 30630019 [TBL] [Abstract][Full Text] [Related]
15. Unimodal and crossmodal gradients of spatial attention: Evidence from event-related potentials. Föcker J; Hötting K; Gondan M; Röder B Brain Topogr; 2010 Mar; 23(1):1-13. PubMed ID: 19821021 [TBL] [Abstract][Full Text] [Related]
16. Electrophysiological indices of spatial attention during global/local processing in good and poor phonological decoders. Matthews AJ; Martin FH Brain Lang; 2009 Dec; 111(3):152-60. PubMed ID: 19828188 [TBL] [Abstract][Full Text] [Related]
17. Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention. Reuter EM; Mattingley JB; Cunnington R; Riek S; Carroll TJ Eur J Neurosci; 2019 Jan; 49(1):120-136. PubMed ID: 30408253 [TBL] [Abstract][Full Text] [Related]
18. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406 [TBL] [Abstract][Full Text] [Related]
19. When far is near: ERP correlates of crossmodal spatial interactions between tactile and mirror-reflected visual stimuli. Sambo CF; Forster B Neurosci Lett; 2011 Aug; 500(1):10-5. PubMed ID: 21683122 [TBL] [Abstract][Full Text] [Related]
20. Frequency tagging of steady-state evoked potentials to explore the crossmodal links in spatial attention between vision and touch. Colon E; Legrain V; Huang G; Mouraux A Psychophysiology; 2015 Nov; 52(11):1498-510. PubMed ID: 26329531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]