These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
683 related articles for article (PubMed ID: 24579825)
1. Modification of Fatty acids in membranes of bacteria: implication for an adaptive mechanism to the toxicity of carbon nanotubes. Zhu B; Xia X; Xia N; Zhang S; Guo X Environ Sci Technol; 2014 Apr; 48(7):4086-95. PubMed ID: 24579825 [TBL] [Abstract][Full Text] [Related]
2. Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Hartono MR; Kushmaro A; Chen X; Marks RS Environ Sci Pollut Res Int; 2018 Feb; 25(5):5003-5012. PubMed ID: 29209964 [TBL] [Abstract][Full Text] [Related]
3. Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: Cytotoxicity and adaptive mechanisms. Yang F; Jiang Q; Xie W; Zhang Y Chemosphere; 2017 Oct; 185():162-170. PubMed ID: 28692883 [TBL] [Abstract][Full Text] [Related]
4. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Wang LH; Zeng XA; Wang MS; Brennan CS; Gong D Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):481-490. PubMed ID: 29138066 [TBL] [Abstract][Full Text] [Related]
5. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Chen H; Wang B; Gao D; Guan M; Zheng L; Ouyang H; Chai Z; Zhao Y; Feng W Small; 2013 Aug; 9(16):2735-46. PubMed ID: 23463684 [TBL] [Abstract][Full Text] [Related]
6. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136 [TBL] [Abstract][Full Text] [Related]
7. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Tiwari KB; Gatto C; Wilkinson BJ Molecules; 2018 May; 23(5):. PubMed ID: 29772798 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Arias LR; Yang L Langmuir; 2009 Mar; 25(5):3003-12. PubMed ID: 19437709 [TBL] [Abstract][Full Text] [Related]
9. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater. Glomstad B; Zindler F; Jenssen BM; Booth AM Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654 [TBL] [Abstract][Full Text] [Related]
11. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Lindberg HK; Falck GC; Singh R; Suhonen S; Järventaus H; Vanhala E; Catalán J; Farmer PB; Savolainen KM; Norppa H Toxicology; 2013 Nov; 313(1):24-37. PubMed ID: 23266321 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface functionalization coupled with medium nutrition level. Chi MF; Wu WL; Du Y; Chin CM; Lin CC J Hazard Mater; 2016 Nov; 318():507-514. PubMed ID: 27450343 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Kang S; Mauter MS; Elimelech M Environ Sci Technol; 2008 Oct; 42(19):7528-34. PubMed ID: 18939597 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Liu S; Ng AK; Xu R; Wei J; Tan CM; Yang Y; Chen Y Nanoscale; 2010 Dec; 2(12):2744-50. PubMed ID: 20877897 [TBL] [Abstract][Full Text] [Related]
15. Attenuation of bacterial cytotoxicity of carbon nanotubes by riverine suspended solids in water. Zhu B; Xia X; Zhang S; Tang Y Environ Pollut; 2018 Mar; 234():581-589. PubMed ID: 29223815 [TBL] [Abstract][Full Text] [Related]
16. Influence of lipids with branched-chain fatty acids on the physical, morphological and functional properties of Escherichia coli cytoplasmic membrane. Legendre S; Letellier L; Shechter E Biochim Biophys Acta; 1980 Nov; 602(3):491-505. PubMed ID: 6776984 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of membrane fluidity of multidrug-resistant isolates of Escherichia coli and Staphylococcus aureus in presence and absence of antibiotics. Bessa LJ; Ferreira M; Gameiro P J Photochem Photobiol B; 2018 Apr; 181():150-156. PubMed ID: 29567316 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Sah U; Sharma K; Chaudhri N; Sankar M; Gopinath P Colloids Surf B Biointerfaces; 2018 Feb; 162():108-117. PubMed ID: 29190461 [TBL] [Abstract][Full Text] [Related]
19. Studies on Enhancement of Anti-microbial Activity of Pristine MWCNTs Against Pathogens. Lohan S; Raza K; Singla S; Chhibber S; Wadhwa S; Katare OP; Kumar P; Singh B AAPS PharmSciTech; 2016 Oct; 17(5):1042-8. PubMed ID: 26729535 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane. Zhu A; Liu HK; Long F; Su E; Klibanov AM Appl Biochem Biotechnol; 2015 Jan; 175(2):666-76. PubMed ID: 25342266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]