BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 24579949)

  • 1. The roles of Jumonji-type oxygenases in human disease.
    Johansson C; Tumber A; Che K; Cain P; Nowak R; Gileadi C; Oppermann U
    Epigenomics; 2014 Feb; 6(1):89-120. PubMed ID: 24579949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jumonji histone demethylases as emerging therapeutic targets.
    Park SY; Park JW; Chun YS
    Pharmacol Res; 2016 Mar; 105():146-51. PubMed ID: 26816087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates.
    Williams ST; Walport LJ; Hopkinson RJ; Madden SK; Chowdhury R; Schofield CJ; Kawamura A
    Epigenetics; 2014 Dec; 9(12):1596-603. PubMed ID: 25625844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation by histone demethylases in hypoxia.
    Hancock RL; Dunne K; Walport LJ; Flashman E; Kawamura A
    Epigenomics; 2015 Aug; 7(5):791-811. PubMed ID: 25832587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural definitions of Jumonji family demethylase selectivity.
    Pilka ES; James T; Lisztwan JH
    Drug Discov Today; 2015 Jun; 20(6):743-9. PubMed ID: 25555749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal oxygenases are structurally conserved from prokaryotes to humans.
    Chowdhury R; Sekirnik R; Brissett NC; Krojer T; Ho CH; Ng SS; Clifton IJ; Ge W; Kershaw NJ; Fox GC; Muniz JRC; Vollmar M; Phillips C; Pilka ES; Kavanagh KL; von Delft F; Oppermann U; McDonough MA; Doherty AJ; Schofield CJ
    Nature; 2014 Jun; 510(7505):422-426. PubMed ID: 24814345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Jumonji gene family in Crassostrea gigas suggests evolutionary conservation of Jmj-C histone demethylases orthologues in the oyster gametogenesis and development.
    Fellous A; Favrel P; Guo X; Riviere G
    Gene; 2014 Mar; 538(1):164-75. PubMed ID: 24406622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships in KDM7 histone demethylases.
    Chaturvedi SS; Ramanan R; Waheed SO; Karabencheva-Christova TG; Christov CZ
    Adv Protein Chem Struct Biol; 2019; 117():113-125. PubMed ID: 31564306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response.
    Kruidenier L; Chung CW; Cheng Z; Liddle J; Che K; Joberty G; Bantscheff M; Bountra C; Bridges A; Diallo H; Eberhard D; Hutchinson S; Jones E; Katso R; Leveridge M; Mander PK; Mosley J; Ramirez-Molina C; Rowland P; Schofield CJ; Sheppard RJ; Smith JE; Swales C; Tanner R; Thomas P; Tumber A; Drewes G; Oppermann U; Patel DJ; Lee K; Wilson DM
    Nature; 2012 Aug; 488(7411):404-8. PubMed ID: 22842901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis.
    Walport LJ; Schofield CJ
    Chem Rec; 2018 Dec; 18(12):1760-1781. PubMed ID: 30151867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation.
    Liu K; Liu Y; Lau JL; Min J
    Pharmacol Ther; 2015 Jul; 151():121-40. PubMed ID: 25857453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new role for histone demethylases in the maintenance of plant genome integrity.
    Antunez-Sanchez J; Naish M; Ramirez-Prado JS; Ohno S; Huang Y; Dawson A; Opassathian K; Manza-Mianza D; Ariel F; Raynaud C; Wibowo A; Daron J; Ueda M; Latrasse D; Slotkin RK; Weigel D; Benhamed M; Gutierrez-Marcos J
    Elife; 2020 Oct; 9():. PubMed ID: 33107825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases.
    Markolovic S; Leissing TM; Chowdhury R; Wilkins SE; Lu X; Schofield CJ
    Curr Opin Struct Biol; 2016 Dec; 41():62-72. PubMed ID: 27309310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.
    Salminen A; Kaarniranta K; Hiltunen M; Kauppinen A
    Cell Signal; 2014 Jul; 26(7):1598-603. PubMed ID: 24704120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9.
    Englert NA; Luo G; Goldstein JA; Surapureddi S
    J Biol Chem; 2015 Jan; 290(4):2264-78. PubMed ID: 25391650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain.
    Upadhyay AK; Horton JR; Zhang X; Cheng X
    Curr Opin Struct Biol; 2011 Dec; 21(6):750-60. PubMed ID: 21872465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. JMJD3 as an epigenetic regulator in development and disease.
    Burchfield JS; Li Q; Wang HY; Wang RF
    Int J Biochem Cell Biol; 2015 Oct; 67():148-57. PubMed ID: 26193001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of demethylases in cardiac development and disease.
    Davis K; Azarcon P; Hickenlooper S; Bia R; Horiuchi E; Szulik MW; Franklin S
    J Mol Cell Cardiol; 2021 Sep; 158():89-100. PubMed ID: 34081951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic gene regulation by plant Jumonji group of histone demethylase.
    Chen X; Hu Y; Zhou DX
    Biochim Biophys Acta; 2011 Aug; 1809(8):421-6. PubMed ID: 21419882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6.
    Islam MS; McDonough MA; Chowdhury R; Gault J; Khan A; Pires E; Schofield CJ
    J Biol Chem; 2019 Jul; 294(30):11637-11652. PubMed ID: 31147442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.