BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24580024)

  • 1. Incorporation of Uranium into Hematite during crystallization from ferrihydrite.
    Marshall TA; Morris K; Law GT; Livens FR; Mosselmans JF; Bots P; Shaw S
    Environ Sci Technol; 2014 Apr; 48(7):3724-31. PubMed ID: 24580024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
    Massey MS; Lezama-Pacheco JS; Michel FM; Fendorf S
    Environ Sci Process Impacts; 2014 Sep; 16(9):2137-44. PubMed ID: 25124142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.
    Bots P; Shaw S; Law GT; Marshall TA; Mosselmans JF; Morris K
    Environ Sci Technol; 2016 Apr; 50(7):3382-90. PubMed ID: 26913955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
    Boland DD; Collins RN; Payne TE; Waite TD
    Environ Sci Technol; 2011 Feb; 45(4):1327-33. PubMed ID: 21210678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of U(VI) incorporated in the structure of hematite.
    Ilton ES; Pacheco JS; Bargar JR; Shi Z; Liu J; Kovarik L; Engelhard MH; Felmy AR
    Environ Sci Technol; 2012 Sep; 46(17):9428-36. PubMed ID: 22834714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide.
    Wazne M; Korfiatis GP; Meng X
    Environ Sci Technol; 2003 Aug; 37(16):3619-24. PubMed ID: 12953874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature.
    Das S; Hendry MJ; Essilfie-Dughan J
    Environ Sci Technol; 2011 Jan; 45(1):268-75. PubMed ID: 21128633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron Vacancies Accommodate Uranyl Incorporation into Hematite.
    McBriarty ME; Kerisit S; Bylaska EJ; Shaw S; Morris K; Ilton ES
    Environ Sci Technol; 2018 Jun; 52(11):6282-6290. PubMed ID: 29757622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
    Stewart BD; Cismasu AC; Williams KH; Peyton BM; Nico PS
    Environ Sci Technol; 2015 Sep; 49(17):10357-65. PubMed ID: 26226398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of uranium(VI) sorption on titanium dioxide by surface iron(III) species in ferric oxide/titanium dioxide systems.
    Comarmond MJ; Payne TE; Collins RN; Palmer G; Lumpkin GR; Angove MJ
    Environ Sci Technol; 2012 Oct; 46(20):11128-34. PubMed ID: 23013221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite.
    Boland DD; Collins RN; Glover CJ; Payne TE; Waite TD
    Environ Sci Technol; 2014 Aug; 48(16):9086-93. PubMed ID: 25014507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides.
    Pang C; Li Y; Wu H; Deng Z; Yuan S; Tan W
    J Environ Radioact; 2024 Feb; 272():107367. PubMed ID: 38171110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uranium complexes formed at hematite surfaces colonized by sulfate-reducing bacteria.
    Neal AL; Amonette JE; Peyton BM; Geesey GG
    Environ Sci Technol; 2004 Jun; 38(11):3019-27. PubMed ID: 15224730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into sequestration of U(VI) toward magnetic biochar: Batch, XPS and EXAFS techniques.
    Hu Q; Zhu Y; Hu B; Lu S; Sheng G
    J Environ Sci (China); 2018 Aug; 70():217-225. PubMed ID: 30092964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-MUSIC modeling.
    Rossberg A; Ulrich KU; Weiss S; Tsushima S; Hiemstra T; Scheinostt AC
    Environ Sci Technol; 2009 Mar; 43(5):1400-6. PubMed ID: 19350910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.
    Marshall TA; Morris K; Law GT; Mosselmans JF; Bots P; Parry SA; Shaw S
    Environ Sci Technol; 2014 Oct; 48(20):11853-62. PubMed ID: 25236360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale size effects on uranium(VI) adsorption to hematite.
    Zeng H; Singh A; Basak S; Ulrich KU; Sahu M; Biswas P; Catalano JG; Giammar DE
    Environ Sci Technol; 2009 Mar; 43(5):1373-8. PubMed ID: 19350906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI).
    Stewart BD; Neiss J; Fendorf S
    J Environ Qual; 2007; 36(2):363-72. PubMed ID: 17255623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium Immobilization and Nanofilm Formation on Magnesium-Rich Minerals.
    van Veelen A; Bargar JR; Law GT; Brown GE; Wogelius RA
    Environ Sci Technol; 2016 Apr; 50(7):3435-43. PubMed ID: 26990311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.