BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24580054)

  • 1. Microarray discovery of new OGT substrates: the medulloblastoma oncogene OTX2 is O-GlcNAcylated.
    Ortiz-Meoz RF; Merbl Y; Kirschner MW; Walker S
    J Am Chem Soc; 2014 Apr; 136(13):4845-8. PubMed ID: 24580054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix.
    Levine ZG; Fan C; Melicher MS; Orman M; Benjamin T; Walker S
    J Am Chem Soc; 2018 Mar; 140(10):3510-3513. PubMed ID: 29485866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting OGT's TPR domain to identify determinants of cellular function.
    Potter SC; Gibbs BE; Hammel FA; Joiner CM; Paulo JA; Janetzko J; Levine ZG; Fei GQ; Haggarty SJ; Walker S
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401729121. PubMed ID: 38768345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The
    Ampudia-Mesias E; Cameron CS; Yoo E; Kelly M; Anderson SM; Manning R; Abrahante Lloréns JE; Moertel CL; Yim H; Odde DJ; Saydam N; Saydam O
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress.
    Martinez M; Renuse S; Kreimer S; O'Meally R; Natov P; Madugundu AK; Nirujogi RS; Tahir R; Cole R; Pandey A; Zachara NE
    Mol Cell Proteomics; 2021; 20():100069. PubMed ID: 33716169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-Terminal Tag Location Hampers in Vitro Profiling of OGT Peptide Substrates by mRNA Display.
    Shi J; Sharif S; Balsollier C; Ruijtenbeek R; Pieters RJ; Jongkees SAK
    Chembiochem; 2021 Feb; 22(4):666-671. PubMed ID: 33022805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 14q22.3 duplication including OTX2 in a girl with medulloblastoma: A case report with literature review.
    Blake C; Widmeyer K; DAquila K; Mochizuki A; Smolarek TA; Pillay-Smiley N; Kim SY
    Am J Med Genet A; 2024 Jul; 194(7):e63604. PubMed ID: 38511879
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Wulff-Fuentes E; Boakye J; Kroenke K; Berendt RR; Martinez-Morant C; Pereckas M; Hanover JA; Olivier-Van Stichelen S
    iScience; 2023 Nov; 26(11):108184. PubMed ID: 38026167
    [No Abstract]   [Full Text] [Related]  

  • 9. The making of a sweet modification: structure and function of O-GlcNAc transferase.
    Janetzko J; Walker S
    J Biol Chem; 2014 Dec; 289(50):34424-32. PubMed ID: 25336649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A small molecule that inhibits OGT activity in cells.
    Ortiz-Meoz RF; Jiang J; Lazarus MB; Orman M; Janetzko J; Fan C; Duveau DY; Tan ZW; Thomas CJ; Walker S
    ACS Chem Biol; 2015 Jun; 10(6):1392-7. PubMed ID: 25751766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-GlcNAc and the epigenetic regulation of gene expression.
    Lewis BA; Hanover JA
    J Biol Chem; 2014 Dec; 289(50):34440-8. PubMed ID: 25336654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-GlcNAc transferase and O-GlcNAcase: achieving target substrate specificity.
    Nagel AK; Ball LE
    Amino Acids; 2014 Oct; 46(10):2305-16. PubMed ID: 25173736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile O-GlcNAc transferase assay for high-throughput identification of enzyme variants, substrates, and inhibitors.
    Kim EJ; Abramowitz LK; Bond MR; Love DC; Kang DW; Leucke HF; Kang DW; Ahn JS; Hanover JA
    Bioconjug Chem; 2014 Jun; 25(6):1025-30. PubMed ID: 24866374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase.
    Liu X; Li L; Wang Y; Yan H; Ma X; Wang PG; Zhang L
    FASEB J; 2014 Aug; 28(8):3362-72. PubMed ID: 24760753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the glycosyltransferase OGT catalyzes amide bond cleavage.
    Janetzko J; Trauger SA; Lazarus MB; Walker S
    Nat Chem Biol; 2016 Nov; 12(11):899-901. PubMed ID: 27618188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster.
    Park S; Lee Y; Pak JW; Kim H; Choi H; Kim JW; Roth J; Cho JW
    Cell Mol Life Sci; 2015 Aug; 72(16):3173-83. PubMed ID: 25840568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT).
    Bauer C; Göbel K; Nagaraj N; Colantuoni C; Wang M; Müller U; Kremmer E; Rottach A; Leonhardt H
    J Biol Chem; 2015 Feb; 290(8):4801-4812. PubMed ID: 25568311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation.
    Guo B; Liang Q; Li L; Hu Z; Wu F; Zhang P; Ma Y; Zhao B; Kovács AL; Zhang Z; Feng D; Chen S; Zhang H
    Nat Cell Biol; 2014 Dec; 16(12):1215-26. PubMed ID: 25419848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-Translational Modification Profiling--a High-Content Assay for Identifying Protein Modifications in Mammalian Cellular Systems.
    Merbl Y; Kirschner MW
    Curr Protoc Protein Sci; 2014 Aug; 77():27.8.1-27.8.13. PubMed ID: 25081743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A little sugar goes a long way: the cell biology of O-GlcNAc.
    Bond MR; Hanover JA
    J Cell Biol; 2015 Mar; 208(7):869-80. PubMed ID: 25825515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.