BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24580107)

  • 1. The fluorescence intermittency for quantum dots is not power-law distributed: a luminescence intensity resolved approach.
    Schmidt R; Krasselt C; Göhler C; von Borczyskowski C
    ACS Nano; 2014 Apr; 8(4):3506-21. PubMed ID: 24580107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sizing Up Excitons in Core-Shell Quantum Dots via Shell-Dependent Photoluminescence Blinking.
    Fisher AAE; Osborne MA
    ACS Nano; 2017 Aug; 11(8):7829-7840. PubMed ID: 28679040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the dielectric environment on the photoluminescence intermittency of CdSe quantum dots.
    Issac A; Krasselt C; Cichos F; von Borczyskowski C
    Chemphyschem; 2012 Sep; 13(13):3223-30. PubMed ID: 22753139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nearly suppressed photoluminescence blinking of small-sized, blue-green-orange-red emitting single CdSe-based core/gradient alloy shell/shell quantum dots: correlation between truncation time and photoluminescence quantum yield.
    Roy D; Mandal S; De CK; Kumar K; Mandal PK
    Phys Chem Chem Phys; 2018 Apr; 20(15):10332-10344. PubMed ID: 29610808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule.
    Zenkevich E; Stupak A; Göhler C; Krasselt C; von Borczyskowski C
    ACS Nano; 2015 Mar; 9(3):2886-903. PubMed ID: 25703788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blinking photoluminescence properties of single TiO2 nanodiscs: interfacial electron transfer dynamics.
    Jeon KS; Oh SD; Suh YD; Yoshikawa H; Masuhara H; Yoon M
    Phys Chem Chem Phys; 2009 Jan; 11(3):534-42. PubMed ID: 19283271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-tunnelling and self-trapping: common origins for blinking, grey-state emission and photoluminescence enhancement in semiconductor quantum dots.
    Osborne MA; Fisher AA
    Nanoscale; 2016 Apr; 8(17):9272-83. PubMed ID: 27088542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced hole trapping in single semiconductor quantum dots at specific sites at silicon oxide interfaces.
    Krasselt C; Schuster J; von Borczyskowski C
    Phys Chem Chem Phys; 2011 Oct; 13(38):17084-92. PubMed ID: 21860851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shell-Dependent Photoluminescence Studies Provide Mechanistic Insights into the Off-Grey-On Transitions of Blinking Quantum Dots.
    Gao F; Bajwa P; Nguyen A; Heyes CD
    ACS Nano; 2017 Mar; 11(3):2905-2916. PubMed ID: 28221750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots.
    Yuan X; Zheng J; Zeng R; Jing P; Ji W; Zhao J; Yang W; Li H
    Nanoscale; 2014 Jan; 6(1):300-7. PubMed ID: 24192996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.
    Qin H; Meng R; Wang N; Peng X
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28256776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers.
    Frantsuzov PA; Volkán-Kacsó S; Jankó B
    Phys Rev Lett; 2009 Nov; 103(20):207402. PubMed ID: 20366010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charging and Discharging Channels in Photoluminescence Intermittency of Single Colloidal CdSe/CdS Core/Shell Quantum Dot.
    Meng R; Qin H; Niu Y; Fang W; Yang S; Lin X; Cao H; Ma J; Lin W; Tong L; Peng X
    J Phys Chem Lett; 2016 Dec; 7(24):5176-5182. PubMed ID: 27973911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-sensitive photoluminescence of CdSe quantum dot clusters.
    Biju V; Makita Y; Sonoda A; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Jul; 109(29):13899-905. PubMed ID: 16852744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.
    Bachir AI; Kolin DL; Heinze KG; Hebert B; Wiseman PW
    J Chem Phys; 2008 Jun; 128(22):225105. PubMed ID: 18554062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of β-mercaptoethanol on CdSe/ZnS and InP/ZnS quantum dots.
    Georgin M; Carlini L; Cooper D; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2013 Jul; 15(25):10418-28. PubMed ID: 23681155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO₂ films by transient absorption and single dot fluorescence spectroscopy.
    Song N; Zhu H; Liu Z; Huang Z; Wu D; Lian T
    ACS Nano; 2013 Feb; 7(2):1599-608. PubMed ID: 23281781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auger ionization beats photo-oxidation of semiconductor quantum dots: extended stability of single-molecule photoluminescence.
    Yamashita S; Hamada M; Nakanishi S; Saito H; Nosaka Y; Wakida S; Biju V
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3892-6. PubMed ID: 25728264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.