These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 24580156)

  • 1. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaussian statistics as an emergent symmetry of the stochastic scalar Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2019 Apr; 99(4-1):042108. PubMed ID: 31108615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kardar-Parisi-Zhang universality class and the anchored Toom interface.
    Barkema GT; Ferrari PL; Lebowitz JL; Spohn H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042116. PubMed ID: 25375447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.
    Sasamoto T; Spohn H
    Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Height distribution of the Kardar-Parisi-Zhang equation with sharp-wedge initial condition: numerical evaluations.
    Prolhac S; Spohn H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011119. PubMed ID: 21867125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1 + 1 dimensions.
    Ueno K; Sakaguchi H; Okamura M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046138. PubMed ID: 15903757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
    Nicoli M; Vivo E; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):045202. PubMed ID: 21230337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossover effects in a discrete deposition model with Kardar-Parisi-Zhang scaling.
    Chame A; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051104. PubMed ID: 12513464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing Universalities in Kardar-Parisi-Zhang Growth Models.
    Saberi AA; Dashti-Naserabadi H; Krug J
    Phys Rev Lett; 2019 Feb; 122(4):040605. PubMed ID: 30768334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Galerkin-truncated Burgers equation: crossover from inviscid-thermalized to Kardar-Parisi-Zhang scaling.
    Cartes C; Tirapegui E; Pandit R; Brachet M
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210090. PubMed ID: 35094560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables.
    Mathey S; Agoritsas E; Kloss T; Lecomte V; Canet L
    Phys Rev E; 2017 Mar; 95(3-1):032117. PubMed ID: 28415329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion in time-dependent random media and the Kardar-Parisi-Zhang equation.
    Le Doussal P; Thiery T
    Phys Rev E; 2017 Jul; 96(1-1):010102. PubMed ID: 29347226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections.
    Oliveira TJ; Alves SG; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):040102. PubMed ID: 23679356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kardar-Parisi-Zhang Physics in the Density Fluctuations of Localized Two-Dimensional Wave Packets.
    Mu S; Gong J; Lemarié G
    Phys Rev Lett; 2024 Jan; 132(4):046301. PubMed ID: 38335351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance.
    Strack P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032131. PubMed ID: 25871078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature.
    Le Doussal P; Majumdar SN; Rosso A; Schehr G
    Phys Rev Lett; 2016 Aug; 117(7):070403. PubMed ID: 27563940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.