These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24580159)
1. From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation. Kawamura Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010901. PubMed ID: 24580159 [TBL] [Abstract][Full Text] [Related]
2. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related]
3. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. Omel'chenko OE; Wolfrum M Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080 [TBL] [Abstract][Full Text] [Related]
4. Phase resetting of collective rhythm in ensembles of oscillators. Levnajić Z; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056202. PubMed ID: 21230558 [TBL] [Abstract][Full Text] [Related]
5. Synchronization scenarios in the Winfree model of coupled oscillators. Gallego R; Montbrió E; Pazó D Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity. Banerjee A; Acharyya M Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304 [TBL] [Abstract][Full Text] [Related]
7. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
8. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise. Gong CC; Zheng C; Toenjes R; Pikovsky A Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833 [TBL] [Abstract][Full Text] [Related]
9. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
10. Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution. Guo S; Xie Y; Dai Q; Li H; Yang J PLoS One; 2020; 15(12):e0243196. PubMed ID: 33296390 [TBL] [Abstract][Full Text] [Related]
11. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators. English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391 [TBL] [Abstract][Full Text] [Related]
12. Configurational stability for the Kuramoto-Sakaguchi model. Bronski JC; Carty T; DeVille L Chaos; 2018 Oct; 28(10):103109. PubMed ID: 30384636 [TBL] [Abstract][Full Text] [Related]
13. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions. Sharma A; Rajwani P; Jalan S Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012 [TBL] [Abstract][Full Text] [Related]
14. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model. English LQ; Zeng Z; Mertens D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767 [TBL] [Abstract][Full Text] [Related]
15. Dynamics in the Sakaguchi-Kuramoto model with two subpopulations [corrected]. Ju P; Dai Q; Cheng H; Yang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012903. PubMed ID: 25122356 [TBL] [Abstract][Full Text] [Related]
16. Low-dimensional behavior of Kuramoto model with inertia in complex networks. Ji P; Peron TK; Rodrigues FA; Kurths J Sci Rep; 2014 May; 4():4783. PubMed ID: 24786680 [TBL] [Abstract][Full Text] [Related]
17. Collective mode reductions for populations of coupled noisy oscillators. Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615 [TBL] [Abstract][Full Text] [Related]
18. The asymptotic behavior of the order parameter for the infinite-N Kuramoto model. Mirollo RE Chaos; 2012 Dec; 22(4):043118. PubMed ID: 23278053 [TBL] [Abstract][Full Text] [Related]
19. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738 [TBL] [Abstract][Full Text] [Related]
20. Coupled Möbius maps as a tool to model Kuramoto phase synchronization. Gong CC; Toenjes R; Pikovsky A Phys Rev E; 2020 Aug; 102(2-1):022206. PubMed ID: 32942495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]