BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24580175)

  • 1. Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle-plate interaction potentials.
    Krott LB; Barbosa MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012110. PubMed ID: 24580175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalies in a waterlike model confined between plates.
    Krott LB; Barbosa MC
    J Chem Phys; 2013 Feb; 138(8):084505. PubMed ID: 23464158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces.
    Giovambattista N; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2009 Oct; 113(42):13723-34. PubMed ID: 19435300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulation of water confined in nanoporous silica.
    Bonnaud PA; Coasne B; Pellenq RJ
    J Phys Condens Matter; 2010 Jul; 22(28):284110. PubMed ID: 21399282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces.
    Kopel Y; Giovambattista N
    J Phys Chem B; 2019 Dec; 123(50):10814-10824. PubMed ID: 31750656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale wetting under electric field from molecular simulations.
    Daub CD; Bratko D; Luzar A
    Top Curr Chem; 2012; 307():155-79. PubMed ID: 21769717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces.
    Eun C; Berkowitz ML
    J Phys Chem A; 2011 Jun; 115(23):6059-67. PubMed ID: 21495665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments.
    Huš M; Urbic T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022115. PubMed ID: 25215697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cluster formation, waterlike anomalies, and re-entrant melting for a family of bounded repulsive interaction potentials.
    Lascaris E; Malescio G; Buldyrev SV; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031201. PubMed ID: 20365727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model.
    Chaimovich A; Shell MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022140. PubMed ID: 25353455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding drops across alternating hydrophobic and hydrophilic stripes.
    Sbragaglia M; Biferale L; Amati G; Varagnolo S; Ferraro D; Mistura G; Pierno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012406. PubMed ID: 24580236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation.
    Koishi T; Yasuoka K; Ebisuzaki T; Yoo S; Zeng XC
    J Chem Phys; 2005 Nov; 123(20):204707. PubMed ID: 16351293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-induced micelle formation in a hydrophobic interaction model.
    Moelbert S; Normand B; De Los Rios P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061924. PubMed ID: 15244634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates.
    Giovambattista N; Rossky PJ; Debenedetti PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041604. PubMed ID: 16711818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water transport inside a single-walled carbon nanotube driven by a temperature gradient.
    Shiomi J; Maruyama S
    Nanotechnology; 2009 Feb; 20(5):055708. PubMed ID: 19417367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force trace hysteresis and temperature dependence of bridging nanobubble induced forces between hydrophobic surfaces.
    Thormann E; Simonsen AC; Hansen PL; Mouritsen OG
    ACS Nano; 2008 Sep; 2(9):1817-24. PubMed ID: 19206420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.
    Mosaddeghi H; Alavi S; Kowsari MH; Najafi B
    J Chem Phys; 2012 Nov; 137(18):184703. PubMed ID: 23163385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.