These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24580178)
1. Breakdown of fast water transport in graphene oxides. Wei N; Peng X; Xu Z Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012113. PubMed ID: 24580178 [TBL] [Abstract][Full Text] [Related]
3. Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Shiomi J; Maruyama S Nanotechnology; 2009 Feb; 20(5):055708. PubMed ID: 19417367 [TBL] [Abstract][Full Text] [Related]
4. Hydrodynamic properties of carbon nanotubes. Walther JH; Werder T; Jaffe RL; Koumoutsakos P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641 [TBL] [Abstract][Full Text] [Related]
5. Why are carbon nanotubes fast transporters of water? Joseph S; Aluru NR Nano Lett; 2008 Feb; 8(2):452-8. PubMed ID: 18189436 [TBL] [Abstract][Full Text] [Related]
6. Transforming graphene nanoribbons into nanotubes by use of point defects. Sgouros A; Sigalas MM; Papagelis K; Kalosakas G J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675 [TBL] [Abstract][Full Text] [Related]
7. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers. Tison Y; Giusca CE; Sloan J; Silva SR ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458 [TBL] [Abstract][Full Text] [Related]
9. Liquid crystals of carbon nanotubes and graphene. Zakri C; Blanc C; Grelet E; Zamora-Ledezma C; Puech N; Anglaret E; Poulin P Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1988):20120499. PubMed ID: 23459968 [TBL] [Abstract][Full Text] [Related]
10. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Najafpour MM; Rahimi F; Fathollahzadeh M; Haghighi B; Hołyńska M; Tomo T; Allakhverdiev SI Dalton Trans; 2014 Jul; 43(28):10866-76. PubMed ID: 24898625 [TBL] [Abstract][Full Text] [Related]
11. Measurement of the rate of water translocation through carbon nanotubes. Qin X; Yuan Q; Zhao Y; Xie S; Liu Z Nano Lett; 2011 May; 11(5):2173-7. PubMed ID: 21462938 [TBL] [Abstract][Full Text] [Related]
13. Helical encapsulation of graphene nanoribbon into carbon nanotube. Jiang Y; Li H; Li Y; Yu H; Liew KM; He Y; Liu X ACS Nano; 2011 Mar; 5(3):2126-33. PubMed ID: 21309562 [TBL] [Abstract][Full Text] [Related]
14. Nanopumping using carbon nanotubes. Insepov Z; Wolf D; Hassanein A Nano Lett; 2006 Sep; 6(9):1893-5. PubMed ID: 16967997 [TBL] [Abstract][Full Text] [Related]
15. Dispersing carbon-based nanomaterials in aqueous phase by graphene oxides. Li Y; Yang J; Zhao Q; Li Y Langmuir; 2013 Nov; 29(44):13527-34. PubMed ID: 24099629 [TBL] [Abstract][Full Text] [Related]
16. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method. Feng JM; Dai YJ Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565 [TBL] [Abstract][Full Text] [Related]
17. Structure and dynamics of water inside endohedrally functionalized carbon nanotubes. Paul S; Abi TG; Taraphder S J Chem Phys; 2014 May; 140(18):184511. PubMed ID: 24832292 [TBL] [Abstract][Full Text] [Related]
18. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. Kannam SK; Todd BD; Hansen JS; Daivis PJ J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608 [TBL] [Abstract][Full Text] [Related]
19. Enhanced release of liquid from carbon nanotubes due to entrainment by an air layer. Sinha Ray S; Chando P; Yarin AL Nanotechnology; 2009 Mar; 20(9):095711. PubMed ID: 19417507 [TBL] [Abstract][Full Text] [Related]
20. Transport properties of T-shaped and crossed junctions based on graphene nanoribbons. OuYang F; Xiao J; Guo R; Zhang H; Xu H Nanotechnology; 2009 Feb; 20(5):055202. PubMed ID: 19417339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]