These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24580188)

  • 1. Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation.
    Entin-Wohlman O; Jiang JH; Imry Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012123. PubMed ID: 24580188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field.
    Brandner K; Saito K; Seifert U
    Phys Rev Lett; 2013 Feb; 110(7):070603. PubMed ID: 25166361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry.
    Benenti G; Saito K; Casati G
    Phys Rev Lett; 2011 Jun; 106(23):230602. PubMed ID: 21770492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
    Yamamoto K; Hatano N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042165. PubMed ID: 26565226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022137. PubMed ID: 24032805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Most efficient quantum thermoelectric at finite power output.
    Whitney RS
    Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bound on thermoelectric power in a magnetic field within linear response.
    Brandner K; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012121. PubMed ID: 25679584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency at maximum power of low-dissipation Carnot engines.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2021 Apr; 103(4-1):042125. PubMed ID: 34006002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency statistics at all times: Carnot limit at finite power.
    Polettini M; Verley G; Esposito M
    Phys Rev Lett; 2015 Feb; 114(5):050601. PubMed ID: 25699428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem.
    Hua Y; Guo ZY
    Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Optimizing Width Modulation for Maximum Thermoelectric Efficiency.
    Stefanou AD; Zianni X
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power.
    Holubec V; Ye Z
    Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry.
    Jiang JH; Agarwalla BK; Segal D
    Phys Rev Lett; 2015 Jul; 115(4):040601. PubMed ID: 26252673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoupling interrelated parameters for designing high performance thermoelectric materials.
    Xiao C; Li Z; Li K; Huang P; Xie Y
    Acc Chem Res; 2014 Apr; 47(4):1287-95. PubMed ID: 24517646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.