These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24580293)

  • 1. Spatial localization in heterogeneous systems.
    Kao HC; Beaume C; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012903. PubMed ID: 24580293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swift-Hohenberg equation with broken cubic-quintic nonlinearity.
    Houghton SM; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016204. PubMed ID: 21867270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homoclinic snaking in the discrete Swift-Hohenberg equation.
    Kusdiantara R; Susanto H
    Phys Rev E; 2017 Dec; 96(6-1):062214. PubMed ID: 29347380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity.
    Thiele U; Archer AJ; Robbins MJ; Gomez H; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042915. PubMed ID: 23679497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized states in the generalized Swift-Hohenberg equation.
    Burke J; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056211. PubMed ID: 16803030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational approximations to homoclinic snaking in continuous and discrete systems.
    Matthews PC; Susanto H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066207. PubMed ID: 22304178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defectlike structures and localized patterns in the cubic-quintic-septic Swift-Hohenberg equation.
    Knobloch E; Uecker H; Wetzel D
    Phys Rev E; 2019 Jul; 100(1-1):012204. PubMed ID: 31499926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized states in periodically forced systems.
    Gandhi P; Knobloch E; Beaume C
    Phys Rev Lett; 2015 Jan; 114(3):034102. PubMed ID: 25659000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation.
    Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066610. PubMed ID: 12513432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homoclinic snaking: structure and stability.
    Burke J; Knobloch E
    Chaos; 2007 Sep; 17(3):037102. PubMed ID: 17903009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eckhaus instability and homoclinic snaking.
    Bergeon A; Burke J; Knobloch E; Mercader I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046201. PubMed ID: 18999502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials.
    He JR; Li HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collisions of localized patterns in a nonvariational Swift-Hohenberg equation.
    Raja M; van Kan A; Foster B; Knobloch E
    Phys Rev E; 2023 Jun; 107(6-1):064214. PubMed ID: 37464667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swift-Hohenberg equation with broken reflection symmetry.
    Burke J; Houghton SM; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036202. PubMed ID: 19905195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized and extended patterns in the cubic-quintic Swift-Hohenberg equation on a disk.
    Verschueren N; Knobloch E; Uecker H
    Phys Rev E; 2021 Jul; 104(1-1):014208. PubMed ID: 34412325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic motion of localized structures.
    Alvarez-Socorro AJ; Clerc MG; Ferré M; Knobloch E
    Phys Rev E; 2020 Apr; 101(4-1):042212. PubMed ID: 32422835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damping filter method for obtaining spatially localized solutions.
    Teramura T; Toh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052910. PubMed ID: 25353864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking.
    Kao HC; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026211. PubMed ID: 22463303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model.
    Tabbert F; Schelte C; Tlidi M; Gurevich SV
    Phys Rev E; 2017 Mar; 95(3-1):032213. PubMed ID: 28415377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competing resonances in spatially forced pattern-forming systems.
    Mau Y; Haim L; Hagberg A; Meron E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032917. PubMed ID: 24125335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.