These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 24580305)

  • 1. Formation of localized structures in bistable systems through nonlocal spatial coupling. II. The nonlocal Ginzburg-Landau equation.
    Gelens L; Matías MA; Gomila D; Dorissen T; Colet P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012915. PubMed ID: 24580305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of localized structures in bistable systems through nonlocal spatial coupling. I. General framework.
    Colet P; Matías MA; Gelens L; Gomila D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012914. PubMed ID: 24580304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection.
    Siebert J; Alonso S; Bär M; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052909. PubMed ID: 25353863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.
    Rousseau G; Chaté H; Kapral R
    Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlocality-induced front-interaction enhancement.
    Gelens L; Gomila D; Van der Sande G; Matías MA; Colet P
    Phys Rev Lett; 2010 Apr; 104(15):154101. PubMed ID: 20481992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling spatio-temporal chaos in the scenario of the one-dimensional complex Ginzburg-Landau equation.
    Boccaletti S; Bragard J
    Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2383-95. PubMed ID: 16893793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal Ginzburg-Landau equation for cortical pattern formation.
    Bressloff PC; Kilpatrick ZP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041916. PubMed ID: 18999464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ginzburg-Landau equation for dynamical four-wave mixing in gain nonlinear media with relaxation.
    Bugaychuk S; Conte R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066603. PubMed ID: 20365290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Ginzburg-Landau equation with nonlocal coupling.
    Tanaka D; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026219. PubMed ID: 14525096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depinning, front motion, and phase slips.
    Ma YP; Knobloch E
    Chaos; 2012 Sep; 22(3):033101. PubMed ID: 23020440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent structures emerging from turbulence in the nonlocal complex Ginzburg-Landau equation.
    García-Morales V; Hölzel RW; Krischer K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026215. PubMed ID: 18850929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ginzburg-Landau amplitude equation for nonlinear nonlocal models.
    Garlaschi S; Gupta D; Maritan A; Azaele S
    Phys Rev E; 2021 Feb; 103(2-1):022210. PubMed ID: 33736032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation.
    Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faceting and coarsening dynamics in the complex Swift-Hohenberg equation.
    Gelens L; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046221. PubMed ID: 19905429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous pulse interaction in dissipative media.
    Bordyugov G; Engel H
    Chaos; 2008 Jun; 18(2):026104. PubMed ID: 18601506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Lagrangian approach and method of moments for reducing dimensionality of soliton dynamical systems.
    Ankiewicz A; Akhmediev N
    Chaos; 2008 Sep; 18(3):033129. PubMed ID: 19045467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos.
    Zaslavsky GM; Edelman M; Tarasov VE
    Chaos; 2007 Dec; 17(4):043124. PubMed ID: 18163788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves.
    Smith MJ; Sherratt JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046209. PubMed ID: 19905417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of spiral waves in an oscillatory system caused by an inhomogeneity.
    Li TC; Li BW
    Chaos; 2013 Sep; 23(3):033130. PubMed ID: 24089966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.