These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 24580313)
1. Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2. Fine BV; Elsayed TA; Kropf CM; de Wijn AS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012923. PubMed ID: 24580313 [TBL] [Abstract][Full Text] [Related]
2. Faster than Lyapunov decays of the classical Loschmidt echo. Veble G; Prosen T Phys Rev Lett; 2004 Jan; 92(3):034101. PubMed ID: 14753878 [TBL] [Abstract][Full Text] [Related]
3. Origin of the exponential decay of the Loschmidt echo in integrable systems. Dubertrand R; Goussev A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022915. PubMed ID: 25353553 [TBL] [Abstract][Full Text] [Related]
4. Loschmidt echo for a chaotic oscillator. Iomin A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026206. PubMed ID: 15447564 [TBL] [Abstract][Full Text] [Related]
5. Classical Loschmidt echo in chaotic many-body systems. Veble G; Prosen T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):025202. PubMed ID: 16196629 [TBL] [Abstract][Full Text] [Related]
6. Largest Lyapunov exponents for lattices of interacting classical spins. de Wijn AS; Hess B; Fine BV Phys Rev Lett; 2012 Jul; 109(3):034101. PubMed ID: 22861854 [TBL] [Abstract][Full Text] [Related]
7. Decoherence as decay of the Loschmidt echo in a Lorentz gas. Cucchietti FM; Pastawski HM; Wisniacki DA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045206. PubMed ID: 12005910 [TBL] [Abstract][Full Text] [Related]
8. Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics. Silvestrov PG; Tworzydło J; Beenakker CW Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025204. PubMed ID: 12636735 [TBL] [Abstract][Full Text] [Related]
9. Signatures of chaos in time series generated by many-spin systems at high temperatures. Elsayed TA; Hess B; Fine BV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022910. PubMed ID: 25215802 [TBL] [Abstract][Full Text] [Related]
10. Loschmidt echo and Lyapunov exponent in a quantum disordered system. Adamov Y; Gornyi IV; Mirlin AD Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056217. PubMed ID: 12786260 [TBL] [Abstract][Full Text] [Related]
11. Loschmidt echo and the local density of states. Ares N; Wisniacki DA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046216. PubMed ID: 19905424 [TBL] [Abstract][Full Text] [Related]
13. Quantum-classical correspondence for the equilibrium distributions of two interacting spins. Emerson J; Ballentine LE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026217. PubMed ID: 11497687 [TBL] [Abstract][Full Text] [Related]
14. Lyapunov Spectrum Scaling for Classical Many-Body Dynamics Close to Integrability. Malishava M; Flach S Phys Rev Lett; 2022 Apr; 128(13):134102. PubMed ID: 35426693 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity to perturbations in a quantum chaotic billiard. Wisniacki DA; Vergini EG; Pastawski HM; Cucchietti FM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):055206. PubMed ID: 12059633 [TBL] [Abstract][Full Text] [Related]
16. Dynamics after a sweep through a quantum critical point. Pollmann F; Mukerjee S; Green AG; Moore JE Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):020101. PubMed ID: 20365512 [TBL] [Abstract][Full Text] [Related]
17. Nodal domain distribution for a nonintegrable two-dimensional anharmonic oscillator. Aiba H; Suzuki T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066214. PubMed ID: 16486047 [TBL] [Abstract][Full Text] [Related]
18. Decay of the Loschmidt echo in a time-dependent environment. Cucchietti FM; Lewenkopf CH; Pastawski HM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026207. PubMed ID: 17025525 [TBL] [Abstract][Full Text] [Related]
19. Chaotic properties of spin lattices near second-order phase transitions. de Wijn AS; Hess B; Fine BV Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062929. PubMed ID: 26764796 [TBL] [Abstract][Full Text] [Related]
20. Loschmidt-echo decay from local boundary perturbations. Goussev A; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):015201. PubMed ID: 17358212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]