These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24580319)

  • 1. Simulation of finite-size fibers in turbulent channel flows.
    Do-Quang M; Amberg G; Brethouwer G; Johansson AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013006. PubMed ID: 24580319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):116. PubMed ID: 30269258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of flexible surface hairs with near-wall turbulence.
    Brücker Ch
    J Phys Condens Matter; 2011 May; 23(18):184120. PubMed ID: 21508482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saltation of particles in turbulent channel flow.
    Ji C; Munjiza A; Avital E; Xu D; Williams J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052202. PubMed ID: 25353782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of turbulent spots in a parallel shear flow.
    Schumacher J; Eckhardt B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046307. PubMed ID: 11308945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oblique laminar-turbulent interfaces in plane shear flows.
    Duguet Y; Schlatter P
    Phys Rev Lett; 2013 Jan; 110(3):034502. PubMed ID: 23373928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.
    Premnath KN; Pattison MJ; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of laminar-turbulent transition in particle-laden channel flow.
    Klinkenberg J; Sardina G; de Lange HC; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043011. PubMed ID: 23679517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces.
    Nguyen QT; Papavassiliou DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering of finite-size particles in turbulence.
    Fiabane L; Zimmermann R; Volk R; Pinton JF; Bourgoin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):035301. PubMed ID: 23030971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence.
    Bae HJ; Encinar MP; Lozano-Durán A
    J Phys Conf Ser; 2018; 1001():012013. PubMed ID: 31632451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistics of polymer extensions in turbulent channel flow.
    Bagheri F; Mitra D; Perlekar P; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056314. PubMed ID: 23214883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
    Kim D; Darve E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological behavior of fiber suspensions in a turbulent channel flow.
    Lin J; Zhang L; Zhang W
    J Colloid Interface Sci; 2006 Apr; 296(2):721-8. PubMed ID: 16236305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow.
    Willis AP; Hwang Y; Cossu C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036321. PubMed ID: 21230185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streamwise-travelling viscous waves in channel flows.
    Ricco P; Hicks PD
    J Eng Math; 2018; 111(1):23-49. PubMed ID: 30996402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wall-Normal Variation of Spanwise Streak Spacing in Turbulent Boundary Layer With Low-to-Moderate Reynolds Number.
    Wang W; Pan C; Wang J
    Entropy (Basel); 2018 Dec; 21(1):. PubMed ID: 33266740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.