These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24580321)

  • 1. Numerical analysis of a red blood cell flowing through a thin micropore.
    Omori T; Hosaka H; Imai Y; Yamaguchi T; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013008. PubMed ID: 24580321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscale simulation of blood flow in small vessels.
    Bagchi P
    Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicles in Poiseuille flow.
    Danker G; Vlahovska PM; Misbah C
    Phys Rev Lett; 2009 Apr; 102(14):148102. PubMed ID: 19392488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores.
    Fisher TC; Van Der Waart FJ; Meiselman HJ
    Biorheology; 1996; 33(2):153-68. PubMed ID: 8679962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation.
    Wang T; Xing Z
    Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z; Zhang X
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional numerical simulation of cell behavior in a flow chamber based on fluid-solid interaction.
    Bai L; Cui Y; Zhang Y; Zhao N
    Biomed Mater Eng; 2014; 24(6):2645-55. PubMed ID: 25226968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.