These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 24580355)
1. Numerical method for the stochastic projected Gross-Pitaevskii equation. Rooney SJ; Blakie PB; Bradley AS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013302. PubMed ID: 24580355 [TBL] [Abstract][Full Text] [Related]
2. Numerical method for evolving the projected Gross-Pitaevskii equation. Blakie PB Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026704. PubMed ID: 18850970 [TBL] [Abstract][Full Text] [Related]
3. Numerical method for evolving the dipolar projected Gross-Pitaevskii equation. Blakie PB; Ticknor C; Bradley AS; Martin AM; Davis MJ; Kawaguchi Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016703. PubMed ID: 19658834 [TBL] [Abstract][Full Text] [Related]
4. Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap. Dion CM; Cancès E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046706. PubMed ID: 12786528 [TBL] [Abstract][Full Text] [Related]
5. Numerical method for the projected Gross-Pitaevskii equation in an infinite rotating two-dimensional Bose gas. Doran R; Billam TP Phys Rev E; 2020 Sep; 102(3-1):033309. PubMed ID: 33075866 [TBL] [Abstract][Full Text] [Related]
6. Dilute Bose gas in two dimensions: density expansions and the Gross-Pitaevskii equation. Cherny AY; Shanenko AA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):027105. PubMed ID: 11497746 [TBL] [Abstract][Full Text] [Related]
7. Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Bader P; Blanes S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046711. PubMed ID: 21599338 [TBL] [Abstract][Full Text] [Related]
8. Collapse of attractive Bose-Einstein condensed vortex states in a cylindrical trap. Adhikari SK Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016703. PubMed ID: 11800816 [TBL] [Abstract][Full Text] [Related]
9. Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation. Krstulovic G; Brachet M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066311. PubMed ID: 21797481 [TBL] [Abstract][Full Text] [Related]
10. Collisionless Sound in a Uniform Two-Dimensional Bose Gas. Ota M; Larcher F; Dalfovo F; Pitaevskii L; Proukakis NP; Stringari S Phys Rev Lett; 2018 Oct; 121(14):145302. PubMed ID: 30339431 [TBL] [Abstract][Full Text] [Related]
11. Classical-field method for time dependent Bose-Einstein condensed gases. Sinatra A; Lobo C; Castin Y Phys Rev Lett; 2001 Nov; 87(21):210404. PubMed ID: 11736326 [TBL] [Abstract][Full Text] [Related]
13. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations. Thalhammer M; Abhau J J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676 [TBL] [Abstract][Full Text] [Related]
14. Efficient and accurate methods for solving the time-dependent spin-1 Gross-Pitaevskii equation. Symes LM; McLachlan RI; Blakie PB Phys Rev E; 2016 May; 93(5):053309. PubMed ID: 27301007 [TBL] [Abstract][Full Text] [Related]
15. Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation. Gargoubi H; Guillet T; Jaziri S; Balti J; Guizal B Phys Rev E; 2016 Oct; 94(4-1):043310. PubMed ID: 27841593 [TBL] [Abstract][Full Text] [Related]
16. Simulations of Bose fields at finite temperature. Davis MJ; Morgan SA; Burnett K Phys Rev Lett; 2001 Oct; 87(16):160402. PubMed ID: 11690189 [TBL] [Abstract][Full Text] [Related]
17. Chaotic self-trapping of a weakly irreversible double Bose condensate. Coullet P; Vandenberghe N Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):025202. PubMed ID: 11497641 [TBL] [Abstract][Full Text] [Related]
18. Inelastic multiple scattering of interacting bosons in weak random potentials. Geiger T; Wellens T; Buchleitner A Phys Rev Lett; 2012 Jul; 109(3):030601. PubMed ID: 22861833 [TBL] [Abstract][Full Text] [Related]
19. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics. Mocz P; Succi S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053304. PubMed ID: 26066276 [TBL] [Abstract][Full Text] [Related]
20. One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions. Cardoso WB; Avelar AT; Bazeia D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036604. PubMed ID: 21517613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]