BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24580380)

  • 1. Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration.
    Oertell K; Chamberlain BT; Wu Y; Ferri E; Kashemirov BA; Beard WA; Wilson SH; McKenna CE; Goodman MF
    Biochemistry; 2014 Mar; 53(11):1842-8. PubMed ID: 24580380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State.
    Oertell K; Kashemirov BA; Negahbani A; Minard C; Haratipour P; Alnajjar KS; Sweasy JB; Batra VK; Beard WA; Wilson SH; McKenna CE; Goodman MF
    Biochemistry; 2018 Jul; 57(26):3925-3933. PubMed ID: 29889506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state.
    Sucato CA; Upton TG; Kashemirov BA; Osuna J; Oertell K; Beard WA; Wilson SH; Florián J; Warshel A; McKenna CE; Goodman MF
    Biochemistry; 2008 Jan; 47(3):870-9. PubMed ID: 18161950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta.
    Sucato CA; Upton TG; Kashemirov BA; Batra VK; Martínek V; Xiang Y; Beard WA; Pedersen LC; Wilson SH; McKenna CE; Florián J; Warshel A; Goodman MF
    Biochemistry; 2007 Jan; 46(2):461-71. PubMed ID: 17209556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
    DeCarlo L; Gowda AS; Suo Z; Spratt TE
    Biochemistry; 2008 Aug; 47(31):8157-64. PubMed ID: 18616289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Polymerase β Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the β-γ Bridging Group of the Incoming dNTP.
    Alnajjar KS; Negahbani A; Nakhjiri M; Krylov IS; Kashemirov BA; McKenna CE; Goodman MF; Sweasy JB
    Biochemistry; 2017 Oct; 56(40):5449-5456. PubMed ID: 28862868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β.
    Oertell K; Florián J; Haratipour P; Crans DC; Kashemirov BA; Wilson SH; McKenna CE; Goodman MF
    Biochemistry; 2019 Apr; 58(13):1764-1773. PubMed ID: 30839203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Effects of β,γ-Modified Deoxynucleoside 5'-Triphosphate Analogues on RNA-Catalyzed Polymerization of DNA.
    Setterholm NA; Haratipour P; Kashemirov BA; McKenna CE; Joyce GF
    Biochemistry; 2021 Jan; 60(1):1-5. PubMed ID: 33356161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes.
    Ahn J; Kraynov VS; Zhong X; Werneburg BG; Tsai MD
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):79-87. PubMed ID: 9512464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase.
    Mizukami S; Kim TW; Helquist SA; Kool ET
    Biochemistry; 2006 Mar; 45(9):2772-8. PubMed ID: 16503632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying the Basicity of the dNTP Leaving Group Modulates Precatalytic Conformational Changes of DNA Polymerase β.
    Alnajjar KS; Wang K; Alvarado-Cruz I; Chavira C; Negahbani A; Nakhjiri M; Minard C; Garcia-Barboza B; Kashemirov BA; McKenna CE; Goodman MF; Sweasy JB
    Biochemistry; 2024 Jun; 63(11):1412-1422. PubMed ID: 38780930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-induced DNA translocation leads to DNA polymerase conformational activation.
    Kirby TW; DeRose EF; Cavanaugh NA; Beard WA; Shock DD; Mueller GA; Wilson SH; London RE
    Nucleic Acids Res; 2012 Apr; 40(7):2974-83. PubMed ID: 22169953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase beta: contributions of template-positioning and dNTP triphosphate-binding residues to catalysis and fidelity.
    Kraynov VS; Showalter AK; Liu J; Zhong X; Tsai MD
    Biochemistry; 2000 Dec; 39(51):16008-15. PubMed ID: 11123928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase beta. Implication for the identity of the rate-limiting conformational change.
    Vande Berg BJ; Beard WA; Wilson SH
    J Biol Chem; 2001 Feb; 276(5):3408-16. PubMed ID: 11024043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism of active site assembly and chemical catalysis of DNA polymerase β.
    Balbo PB; Wang EC; Tsai MD
    Biochemistry; 2011 Nov; 50(45):9865-75. PubMed ID: 22010960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase beta catalysis: are different mechanisms possible?
    Alberts IL; Wang Y; Schlick T
    J Am Chem Soc; 2007 Sep; 129(36):11100-10. PubMed ID: 17696533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment.
    Klvaňa M; Murphy DL; Jeřábek P; Goodman MF; Warshel A; Sweasy JB; Florián J
    Biochemistry; 2012 Nov; 51(44):8829-43. PubMed ID: 23013478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The I260Q variant of DNA polymerase beta extends mispaired primer termini due to its increased affinity for deoxynucleotide triphosphate substrates.
    Dalal S; Starcevic D; Jaeger J; Sweasy JB
    Biochemistry; 2008 Nov; 47(46):12118-25. PubMed ID: 18937502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.