These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24580447)

  • 21. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions.
    Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R
    J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-induced desorption of NO from NiO(100): calculation of the four-dimensional potential energy surfaces and systematic wave packet studies.
    Mehdaoui I; Kröner D; Pykavy M; Freund HJ; Klüner T
    Phys Chem Chem Phys; 2006 Apr; 8(13):1584-92. PubMed ID: 16633643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface.
    Shirhatti PR; Rahinov I; Golibrzuch K; Werdecker J; Geweke J; Altschäffel J; Kumar S; Auerbach DJ; Bartels C; Wodtke AM
    Nat Chem; 2018 Jun; 10(6):592-598. PubMed ID: 29483637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasiclassical trajectory calculations of correlated product distributions for the F + CHD3(v1 = 0, 1) reactions using an ab initio potential energy surface.
    Czakó G; Bowman JM
    J Chem Phys; 2009 Dec; 131(24):244302. PubMed ID: 20059068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long live vinylidene! A new view of the H(2)C=C: --> HC triple bond CH rearrangement from ab initio molecular dynamics.
    Hayes RL; Fattal E; Govind N; Carter EA
    J Am Chem Soc; 2001 Jan; 123(4):641-57. PubMed ID: 11456576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface.
    Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C
    J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excited state dynamics of a PtII diimine complex bearing a naphthalene-diimide electron acceptor.
    Sazanovich IV; Alamiry MA; Best J; Bennett RD; Bouganov OV; Davies ES; Grivin VP; Meijer AJ; Plyusnin VF; Ronayne KL; Shelton AH; Tikhomirov SA; Towrie M; Weinstein JA
    Inorg Chem; 2008 Nov; 47(22):10432-45. PubMed ID: 18939820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bound states of the OH(2Pi)-HCl complex on ab initio diabatic potentials.
    Groenenboom GC; Fishchuk AV; van der Avoird A
    J Chem Phys; 2009 Sep; 131(12):124307. PubMed ID: 19791881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of the state-to-state photodissociation dynamics of the vibrationally excited water molecule in the B band.
    Lin GS; Zhou L; Xie D
    J Phys Chem A; 2014 Oct; 118(39):9220-7. PubMed ID: 24832490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces.
    Ge A; Rudshteyn B; Zhu J; Maurer RJ; Batista VS; Lian T
    J Phys Chem Lett; 2018 Jan; 9(2):406-412. PubMed ID: 29227669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water.
    Odelius M
    J Phys Chem A; 2009 Jul; 113(29):8176-81. PubMed ID: 19569699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio potential energy surfaces and nonadiabatic interactions in the H+ +NO collision system.
    Amaran S; Kumar S; Köppel H
    J Chem Phys; 2008 Mar; 128(12):124305. PubMed ID: 18376917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of large-amplitude vibration to electron excitation at a metal surface.
    White JD; Chen J; Matsiev D; Auerbach DJ; Wodtke AM
    Nature; 2005 Feb; 433(7025):503-5. PubMed ID: 15690036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111).
    Golibrzuch K; Kandratsenka A; Rahinov I; Cooper R; Auerbach DJ; Wodtke AM; Bartels C
    J Phys Chem A; 2013 Aug; 117(32):7091-101. PubMed ID: 23947910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study.
    Füchsel G; Zhou X; Jiang B; Juaristi JI; Alducin M; Guo H; Kroes GJ
    J Phys Chem C Nanomater Interfaces; 2019 Jan; 123(4):2287-2299. PubMed ID: 30740194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O.
    Daud MN; Balint-Kurti GG; Brown A
    J Chem Phys; 2005 Feb; 122(5):54305. PubMed ID: 15740320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum effects on vibrational and electronic spectra of hydrazine studied by "on-the-fly" ab initio ring polymer molecular dynamics.
    Kaczmarek A; Shiga M; Marx D
    J Phys Chem A; 2009 Mar; 113(10):1985-94. PubMed ID: 19199678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociation dynamics of thiolactic acid at 193 nm: detection of the nascent OH product by laser-induced fluorescence.
    Pushpa KK; Upadhyaya HP; Kumar A; Naik PD; Bajaj P; Mittal JP
    J Chem Phys; 2004 Apr; 120(15):6964-72. PubMed ID: 15267595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio nonadiabatic molecular dynamics of wet-electrons on the TiO(2) surface.
    Fischer SA; Duncan WR; Prezhdo OV
    J Am Chem Soc; 2009 Oct; 131(42):15483-91. PubMed ID: 19780540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.