These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24580459)

  • 1. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.
    Penco G; Danailov M; Demidovich A; Allaria E; De Ninno G; Di Mitri S; Fawley WM; Ferrari E; Giannessi L; Trovó M
    Phys Rev Lett; 2014 Jan; 112(4):044801. PubMed ID: 24580459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe.
    Emma P; Venturini M; Bane KL; Stupakov G; Kang HS; Chae MS; Hong J; Min CK; Yang H; Ha T; Lee WW; Park CD; Park SJ; Ko IS
    Phys Rev Lett; 2014 Jan; 112(3):034801. PubMed ID: 24484143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive Linearization of the Magnetic Bunch Compression Using Self-Induced Fields.
    Penco G; Allaria E; Cudin I; Di Mitri S; Gauthier D; Spampinati S; Trovó M; Giannessi L; Roussel E; Bettoni S; Craievich P; Ferrari E
    Phys Rev Lett; 2017 Nov; 119(18):184802. PubMed ID: 29219607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic concepts in plasma accelerators.
    Bingham R
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):559-75. PubMed ID: 16483948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping.
    Li Y; Lewellen JW
    Phys Rev Lett; 2008 Feb; 100(7):074801. PubMed ID: 18352560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.
    Piot P; Behrens C; Gerth C; Dohlus M; Lemery F; Mihalcea D; Stoltz P; Vogt M
    Phys Rev Lett; 2012 Jan; 108(3):034801. PubMed ID: 22400747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.
    St Aubin J; Steciw S; Fallone BG
    Med Phys; 2010 Feb; 37(2):466-76. PubMed ID: 20229855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of microbunching instability using bending magnets in free-electron-laser linacs.
    Qiang J; Mitchell CE; Venturini M
    Phys Rev Lett; 2013 Aug; 111(5):054801. PubMed ID: 23952409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures.
    Deng H; Zhang M; Feng C; Zhang T; Wang X; Lan T; Feng L; Zhang W; Liu X; Yao H; Shen L; Li B; Zhang J; Li X; Fang W; Wang D; Couprie ME; Lin G; Liu B; Gu Q; Wang D; Zhao Z
    Phys Rev Lett; 2014 Dec; 113(25):254802. PubMed ID: 25554888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of cascaded optical inverse free-electron laser accelerator.
    Dunning M; Hemsing E; Hast C; Raubenheimer TO; Weathersby S; Xiang D; Fu F
    Phys Rev Lett; 2013 Jun; 110(24):244801. PubMed ID: 25165931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel electron accelerator for MRI-Linac radiotherapy.
    Whelan B; Gierman S; Holloway L; Schmerge J; Keall P; Fahrig R
    Med Phys; 2016 Mar; 43(3):1285-94. PubMed ID: 26936713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures.
    Fu F; Wang R; Zhu P; Zhao L; Jiang T; Lu C; Liu S; Shi L; Yan L; Deng H; Feng C; Gu Q; Huang D; Liu B; Wang D; Wang X; Zhang M; Zhao Z; Stupakov G; Xiang D; Zhang J
    Phys Rev Lett; 2015 Mar; 114(11):114801. PubMed ID: 25839281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser.
    Fröhlich L; Casarin K; Vascotto A
    Radiat Prot Dosimetry; 2015 Feb; 163(2):141-7. PubMed ID: 24757175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of electron acceleration in a laser-driven dielectric microstructure.
    Peralta EA; Soong K; England RJ; Colby ER; Wu Z; Montazeri B; McGuinness C; McNeur J; Leedle KJ; Walz D; Sozer EB; Cowan B; Schwartz B; Travish G; Byer RL
    Nature; 2013 Nov; 503(7474):91-4. PubMed ID: 24077116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring electron energies during FLASH irradiations.
    Berne A; Petersson K; Tullis IDC; Newman RG; Vojnovic B
    Phys Med Biol; 2021 Feb; 66(4):045015. PubMed ID: 33361551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers.
    Kimura WD; Andreev NE; Babzien M; Ben-Zvi I; Cline DB; Dilley CE; Gottschalk SC; Hooker SM; Kusche KP; Kuznetsov SV; Pavlishin IV; Pogorelsky IV; Pogosova AA; Steinhauer LC; Ting A; Yakimenko V; Zigler A; Zhou F
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):611-22. PubMed ID: 16483952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear longitudinal space charge oscillations in relativistic electron beams.
    Musumeci P; Li RK; Marinelli A
    Phys Rev Lett; 2011 May; 106(18):184801. PubMed ID: 21635094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of Model-Independent Control of the Longitudinal Phase Space of Electron Beams in the Linac-Coherent Light Source with Femtosecond Resolution.
    Scheinker A; Edelen A; Bohler D; Emma C; Lutman A
    Phys Rev Lett; 2018 Jul; 121(4):044801. PubMed ID: 30095929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First High power test results for 2.1 GHz superconducting photonic band gap accelerator cavities.
    Simakov EI; Haynes WB; Madrid MA; Romero FP; Tajima T; Tuzel WM; Boulware CH; Grimm TL
    Phys Rev Lett; 2012 Oct; 109(16):164801. PubMed ID: 23215084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure.
    Antipov S; Baturin S; Jing C; Fedurin M; Kanareykin A; Swinson C; Schoessow P; Gai W; Zholents A
    Phys Rev Lett; 2014 Mar; 112(11):114801. PubMed ID: 24702378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.