These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24580589)

  • 1. Ultrafast Stark-induced polaritonic switches.
    Cancellieri E; Hayat A; Steinberg AM; Giacobino E; Bramati A
    Phys Rev Lett; 2014 Feb; 112(5):053601. PubMed ID: 24580589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities.
    Saba M; Ciuti C; Bloch J; Thierry-Mieg V; André R; Dang le S; Kundermann S; Mura A; Bongiovanni G; Staehli JL; Deveaud B
    Nature; 2001 Dec; 414(6865):731-5. PubMed ID: 11742394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polaritonic manipulation based on the spin-selective optical Stark effect in the WS
    Zhang WL; Li XJ; Wang SS; Zheng CY; Li XF; Rao YJ
    Nanoscale; 2019 Mar; 11(10):4571-4577. PubMed ID: 30806405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Stark effect in strongly coupled microcavity exciton polaritons.
    Hayat A; Lange C; Rozema LA; Darabi A; van Driel HM; Steinberg AM; Nelsen B; Snoke DW; Pfeiffer LN; West KW
    Phys Rev Lett; 2012 Jul; 109(3):033605. PubMed ID: 22861850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Polariton Topological Insulators All-Optically Controlled by the Stark Effect.
    Zheng C; Zhang Y; Zhang W
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4764-4773. PubMed ID: 36630144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities.
    Möhl C; Graf A; Berger FJ; Lüttgens J; Zakharko Y; Lumsargis V; Gather MC; Zaumseil J
    ACS Photonics; 2018 Jun; 5(6):2074-2080. PubMed ID: 29963582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations.
    Unold T; Mueller K; Lienau C; Elsaesser T; Wieck AD
    Phys Rev Lett; 2004 Apr; 92(15):157401. PubMed ID: 15169317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically Controlled Femtosecond Polariton Switch at Room Temperature.
    Chen F; Li H; Zhou H; Luo S; Sun Z; Ye Z; Sun F; Wang J; Zheng Y; Chen X; Xu H; Xu H; Byrnes T; Chen Z; Wu J
    Phys Rev Lett; 2022 Jul; 129(5):057402. PubMed ID: 35960578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stark effect induced microcavity polariton solitons.
    Zhang WL; Wu XM; Wang F; Ma R; Li XF; Rao YJ
    Opt Express; 2015 Jun; 23(12):15762-7. PubMed ID: 26193554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polaritonic Cross Feshbach Resonance.
    Navadeh-Toupchi M; Takemura N; Anderson MD; Oberli DY; Portella-Oberli MT
    Phys Rev Lett; 2019 Feb; 122(4):047402. PubMed ID: 30768331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities.
    Stevenson RM; Astratov VN; Skolnick MS; Whittaker DM; Emam-Ismail M; Tartakovskii AI; Savvidis PG; Baumberg JJ; Roberts JS
    Phys Rev Lett; 2000 Oct; 85(17):3680-3. PubMed ID: 11030980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing the polariton drag effect to design an electrically controlled optical switch.
    Berman OL; Kezerashvili RY; Kolmakov GV
    ACS Nano; 2014 Oct; 8(10):10437-47. PubMed ID: 25265156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity.
    Amthor M; Weißenseel S; Fischer J; Kamp M; Schneider C; Höfling S
    Opt Express; 2014 Dec; 22(25):31146-53. PubMed ID: 25607064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical stark effects in j-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction.
    Vasa P; Wang W; Pomraenke R; Maiuri M; Manzoni C; Cerullo G; Lienau C
    Phys Rev Lett; 2015 Jan; 114(3):036802. PubMed ID: 25659013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room temperature Bloch surface wave polaritons.
    Lerario G; Cannavale A; Ballarini D; Dominici L; De Giorgi M; Liscidini M; Gerace D; Sanvitto D; Gigli G
    Opt Lett; 2014 Apr; 39(7):2068-71. PubMed ID: 24686676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GaAs polariton light-emitting diode operating near room temperature.
    Tsintzos SI; Pelekanos NT; Konstantinidis G; Hatzopoulos Z; Savvidis PG
    Nature; 2008 May; 453(7193):372-5. PubMed ID: 18480820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged Polaron Polaritons in an Organic Semiconductor Microcavity.
    Cheng CY; Dhanker R; Gray CL; Mukhopadhyay S; Kennehan ER; Asbury JB; Sokolov A; Giebink NC
    Phys Rev Lett; 2018 Jan; 120(1):017402. PubMed ID: 29350953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubband Polariton-Polariton Scattering in a Dispersive Microcavity.
    Knorr M; Manceau JM; Mornhinweg J; Nespolo J; Biasiol G; Tran NL; Malerba M; Goulain P; Lafosse X; Jeannin M; Stefinger M; Carusotto I; Lange C; Colombelli R; Huber R
    Phys Rev Lett; 2022 Jun; 128(24):247401. PubMed ID: 35776456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.