BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24580666)

  • 21. Effects of emergence time and early social rearing environment on behaviour of Atlantic salmon: consequences for juvenile fitness and smolt migration.
    Larsen MH; Johnsson JI; Winberg S; Wilson AD; Hammenstig D; Thörnqvist PO; Midwood JD; Aarestrup K; Höglund E
    PLoS One; 2015; 10(3):e0119127. PubMed ID: 25747862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upstream migratory behaviour of wild and ranched Atlantic salmon Salmo salar at a natural obstacle in a coastal spate river.
    Kennedy RJ; Moffett I; Allen MM; Dawson SM
    J Fish Biol; 2013 Sep; 83(3):515-30. PubMed ID: 23991871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar).
    Thörnqvist PO; Höglund E; Winberg S
    J Exp Biol; 2015 Apr; 218(Pt 7):1077-83. PubMed ID: 25722007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth hormone transgenesis does not influence territorial dominance or growth and survival of first-feeding Atlantic salmon Salmo salar in food-limited stream microcosms.
    Moreau DT; Fleming IA; Fletcher GL; Brown JA
    J Fish Biol; 2011 Mar; 78(3):726-40. PubMed ID: 21366569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of seawater tolerance and subsequent downstream migration in wild and stocked young-of-the-year derived Atlantic salmon Salmo salar smolts.
    Urke HA; Arnekleiv JV; Nilsen TO; Nilssen KJ
    J Fish Biol; 2014 Jan; 84(1):178-92. PubMed ID: 24383804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of stocking with 0+ year age-class Atlantic salmon Salmo salar fry: a case study from the River Bush, Northern Ireland.
    Kennedy RJ; Crozier WW; Allen M
    J Fish Biol; 2012 Oct; 81(5):1730-46. PubMed ID: 23020571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unravelling first-generation pedigrees in wild endangered salmon populations using molecular genetic markers.
    Herbinger CM; O'reilly PT; Verspoor E
    Mol Ecol; 2006 Jul; 15(8):2261-75. PubMed ID: 16780439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does Vaterite Otolith Deformation Affect Post-Release Survival and Predation Susceptibility of Hatchery-Reared Juvenile Atlantic Salmon?
    Delaval A; Solås MR; Skoglund H; Salvanes AGV
    Front Vet Sci; 2021; 8():709850. PubMed ID: 34646876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ontogenetic selection on hatchery salmon in the wild: natural selection on artificial phenotypes.
    Bailey MM; Lachapelle KA; Kinnison MT
    Evol Appl; 2010 Jul; 3(4):340-51. PubMed ID: 25567929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimates of natural selection in a salmon population in captive and natural environments.
    Ford MJ; Hard JJ; Boelts B; LaHood E; Miller J
    Conserv Biol; 2008 Jun; 22(3):783-94. PubMed ID: 18577092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High risk no gain-metabolic performance of hatchery reared Atlantic salmon smolts, effects of nest emergence time, hypoxia avoidance behaviour and size.
    Rosengren M; Thörnqvist PO; Johnsson JI; Sandblom E; Winberg S; Sundell K
    Physiol Behav; 2017 Jun; 175():104-112. PubMed ID: 28342770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiorespiratory modifications, and limitations, in post-smolt growth hormone transgenic Atlantic salmon Salmo salar.
    Deitch EJ; Fletcher GL; Petersen LH; Costa IA; Shears MA; Driedzic WR; Gamperl AK
    J Exp Biol; 2006 Apr; 209(Pt 7):1310-25. PubMed ID: 16547302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression.
    Bicskei B; Taggart JB; Glover KA; Bron JE
    Genet Sel Evol; 2016 Mar; 48():20. PubMed ID: 26987528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Population genomic analyses of early-phase Atlantic Salmon (Salmo salar) domestication/captive breeding.
    Mäkinen H; Vasemägi A; McGinnity P; Cross TF; Primmer CR
    Evol Appl; 2015 Jan; 8(1):93-107. PubMed ID: 25667605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nature versus nurture? Consequences of short captivity in early stages.
    Horreo JL; Valiente AG; Ardura A; Blanco A; Garcia-Gonzalez C; Garcia-Vazquez E
    Ecol Evol; 2018 Jan; 8(1):521-529. PubMed ID: 29321890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensory complementation and antipredator behavioural compensation in acid-impacted juvenile Atlantic salmon.
    Elvidge CK; Macnaughton CJ; Brown GE
    Oecologia; 2013 May; 172(1):69-78. PubMed ID: 23053236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip.
    Karlsson S; Moen T; Lien S; Glover KA; Hindar K
    Mol Ecol Resour; 2011 Mar; 11 Suppl 1():247-53. PubMed ID: 21429178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome.
    Roberge C; Normandeau E; Einum S; Guderley H; Bernatchez L
    Mol Ecol; 2008 Jan; 17(1):314-24. PubMed ID: 18173503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of shelter on welfare of juvenile Atlantic salmon Salmo salar reared under a feed restriction regimen.
    Persson L; Alanärä A
    J Fish Biol; 2014 Sep; 85(3):645-56. PubMed ID: 25040535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar).
    Kolarevic J; Takle H; Felip O; Ytteborg E; Selset R; Good CM; Baeverfjord G; Asgård T; Terjesen BF
    Aquat Toxicol; 2012 Nov; 124-125():48-57. PubMed ID: 22898234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.