BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24580805)

  • 1. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice.
    Motch Perrine SM; Cole TM; Martínez-Abadías N; Aldridge K; Jabs EW; Richtsmeier JT
    BMC Dev Biol; 2014 Feb; 14():8. PubMed ID: 24580805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice.
    Wang Y; Sun M; Uhlhorn VL; Zhou X; Peter I; Martinez-Abadias N; Hill CA; Percival CJ; Richtsmeier JT; Huso DL; Jabs EW
    BMC Dev Biol; 2010 Feb; 10():22. PubMed ID: 20175913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis.
    Yin L; Du X; Li C; Xu X; Chen Z; Su N; Zhao L; Qi H; Li F; Xue J; Yang J; Jin M; Deng C; Chen L
    Bone; 2008 Apr; 42(4):631-43. PubMed ID: 18242159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth.
    Martínez-Abadías N; Percival C; Aldridge K; Hill CA; Ryan T; Sirivunnabood S; Wang Y; Jabs EW; Richtsmeier JT
    Dev Dyn; 2010 Nov; 239(11):3058-71. PubMed ID: 20842696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
    Holmes G; Basilico C
    Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of Apert (P253R mutation) and Pfeiffer (C278F mutation) syndromes and suggesting a basis for differences in their cranial phenotypes.
    Britto JA; Moore RL; Evans RD; Hayward RD; Jones BM
    J Neurosurg; 2001 Oct; 95(4):660-73. PubMed ID: 11596961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome.
    Luo F; Xie Y; Xu W; Huang J; Zhou S; Wang Z; Luo X; Liu M; Chen L; Du X
    Int J Biol Sci; 2017; 13(1):32-45. PubMed ID: 28123344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrantly activated Wnt/β-catenin pathway co-receptors LRP5 and LRP6 regulate osteoblast differentiation in the developing coronal sutures of an Apert syndrome (Fgfr2
    Min Swe NM; Kobayashi Y; Kamimoto H; Moriyama K
    Dev Dyn; 2021 Mar; 250(3):465-476. PubMed ID: 32822074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues.
    Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT
    Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soluble form of FGFR2 with S252W partially prevents craniosynostosis of the apert mouse model.
    Morita J; Nakamura M; Kobayashi Y; Deng CX; Funato N; Moriyama K
    Dev Dyn; 2014 Apr; 243(4):560-7. PubMed ID: 24259495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome.
    Kim B; Shin H; Kim W; Kim H; Cho Y; Yoon H; Baek J; Woo K; Lee Y; Ryoo H
    J Dent Res; 2020 Feb; 99(2):223-232. PubMed ID: 31869252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.
    Martínez-Abadías N; Heuzé Y; Wang Y; Jabs EW; Aldridge K; Richtsmeier JT
    PLoS One; 2011; 6(10):e26425. PubMed ID: 22053191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis.
    Yokota M; Kobayashi Y; Morita J; Suzuki H; Hashimoto Y; Sasaki Y; Akiyoshi K; Moriyama K
    PLoS One; 2014; 9(7):e101693. PubMed ID: 25003957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain phenotypes in two FGFR2 mouse models for Apert syndrome.
    Aldridge K; Hill CA; Austin JR; Percival C; Martinez-Abadias N; Neuberger T; Wang Y; Jabs EW; Richtsmeier JT
    Dev Dyn; 2010 Mar; 239(3):987-97. PubMed ID: 20077479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dura in the pathogenesis of syndromic craniosynostosis: fibroblast growth factor receptor 2 mutations in dural cells promote osteogenic proliferation and differentiation of osteoblasts.
    Ang BU; Spivak RM; Nah HD; Kirschner RE
    J Craniofac Surg; 2010 Mar; 21(2):462-7. PubMed ID: 20489451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells.
    Lu C; Huguley S; Cui C; Cabaniss LB; Waite PD; Sarver DM; Mamaeva OA; MacDougall M
    Cells Tissues Organs; 2016; 201(1):26-37. PubMed ID: 26613250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processes and patterns: Insights on cranial covariation from an Apert syndrome mouse model.
    Singh N; Heuzé Y; Holmes G
    Dev Dyn; 2022 Oct; 251(10):1684-1697. PubMed ID: 35582939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis.
    Park J; Park OJ; Yoon WJ; Kim HJ; Choi KY; Cho TJ; Ryoo HM
    J Cell Biochem; 2012 Feb; 113(2):457-64. PubMed ID: 21928350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal brain and skull growth in an Apert syndrome mouse model.
    Hill CA; Martínez-Abadías N; Motch SM; Austin JR; Wang Y; Jabs EW; Richtsmeier JT; Aldridge K
    Am J Med Genet A; 2013 Apr; 161A(4):745-57. PubMed ID: 23495236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes.
    Motch Perrine SM; Stecko T; Neuberger T; Jabs EW; Ryan TM; Richtsmeier JT
    Front Hum Neurosci; 2017; 11():369. PubMed ID: 28790902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.