These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 24580805)
1. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice. Motch Perrine SM; Cole TM; Martínez-Abadías N; Aldridge K; Jabs EW; Richtsmeier JT BMC Dev Biol; 2014 Feb; 14():8. PubMed ID: 24580805 [TBL] [Abstract][Full Text] [Related]
2. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. Wang Y; Sun M; Uhlhorn VL; Zhou X; Peter I; Martinez-Abadias N; Hill CA; Percival CJ; Richtsmeier JT; Huso DL; Jabs EW BMC Dev Biol; 2010 Feb; 10():22. PubMed ID: 20175913 [TBL] [Abstract][Full Text] [Related]
3. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Yin L; Du X; Li C; Xu X; Chen Z; Su N; Zhao L; Qi H; Li F; Xue J; Yang J; Jin M; Deng C; Chen L Bone; 2008 Apr; 42(4):631-43. PubMed ID: 18242159 [TBL] [Abstract][Full Text] [Related]
4. Beyond the closed suture in apert syndrome mouse models: evidence of primary effects of FGFR2 signaling on facial shape at birth. Martínez-Abadías N; Percival C; Aldridge K; Hill CA; Ryan T; Sirivunnabood S; Wang Y; Jabs EW; Richtsmeier JT Dev Dyn; 2010 Nov; 239(11):3058-71. PubMed ID: 20842696 [TBL] [Abstract][Full Text] [Related]
5. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Holmes G; Basilico C Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175 [TBL] [Abstract][Full Text] [Related]
6. Negative autoregulation of fibroblast growth factor receptor 2 expression characterizing cranial development in cases of Apert (P253R mutation) and Pfeiffer (C278F mutation) syndromes and suggesting a basis for differences in their cranial phenotypes. Britto JA; Moore RL; Evans RD; Hayward RD; Jones BM J Neurosurg; 2001 Oct; 95(4):660-73. PubMed ID: 11596961 [TBL] [Abstract][Full Text] [Related]
7. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome. Luo F; Xie Y; Xu W; Huang J; Zhou S; Wang Z; Luo X; Liu M; Chen L; Du X Int J Biol Sci; 2017; 13(1):32-45. PubMed ID: 28123344 [TBL] [Abstract][Full Text] [Related]
8. Aberrantly activated Wnt/β-catenin pathway co-receptors LRP5 and LRP6 regulate osteoblast differentiation in the developing coronal sutures of an Apert syndrome (Fgfr2 Min Swe NM; Kobayashi Y; Kamimoto H; Moriyama K Dev Dyn; 2021 Mar; 250(3):465-476. PubMed ID: 32822074 [TBL] [Abstract][Full Text] [Related]
9. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues. Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501 [TBL] [Abstract][Full Text] [Related]
10. Soluble form of FGFR2 with S252W partially prevents craniosynostosis of the apert mouse model. Morita J; Nakamura M; Kobayashi Y; Deng CX; Funato N; Moriyama K Dev Dyn; 2014 Apr; 243(4):560-7. PubMed ID: 24259495 [TBL] [Abstract][Full Text] [Related]
11. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models. Martínez-Abadías N; Heuzé Y; Wang Y; Jabs EW; Aldridge K; Richtsmeier JT PLoS One; 2011; 6(10):e26425. PubMed ID: 22053191 [TBL] [Abstract][Full Text] [Related]
12. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome. Kim B; Shin H; Kim W; Kim H; Cho Y; Yoon H; Baek J; Woo K; Lee Y; Ryoo H J Dent Res; 2020 Feb; 99(2):223-232. PubMed ID: 31869252 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. Yokota M; Kobayashi Y; Morita J; Suzuki H; Hashimoto Y; Sasaki Y; Akiyoshi K; Moriyama K PLoS One; 2014; 9(7):e101693. PubMed ID: 25003957 [TBL] [Abstract][Full Text] [Related]
14. Brain phenotypes in two FGFR2 mouse models for Apert syndrome. Aldridge K; Hill CA; Austin JR; Percival C; Martinez-Abadias N; Neuberger T; Wang Y; Jabs EW; Richtsmeier JT Dev Dyn; 2010 Mar; 239(3):987-97. PubMed ID: 20077479 [TBL] [Abstract][Full Text] [Related]
15. Dura in the pathogenesis of syndromic craniosynostosis: fibroblast growth factor receptor 2 mutations in dural cells promote osteogenic proliferation and differentiation of osteoblasts. Ang BU; Spivak RM; Nah HD; Kirschner RE J Craniofac Surg; 2010 Mar; 21(2):462-7. PubMed ID: 20489451 [TBL] [Abstract][Full Text] [Related]
16. Effects of FGFR Signaling on Cell Proliferation and Differentiation of Apert Dental Cells. Lu C; Huguley S; Cui C; Cabaniss LB; Waite PD; Sarver DM; Mamaeva OA; MacDougall M Cells Tissues Organs; 2016; 201(1):26-37. PubMed ID: 26613250 [TBL] [Abstract][Full Text] [Related]
17. Processes and patterns: Insights on cranial covariation from an Apert syndrome mouse model. Singh N; Heuzé Y; Holmes G Dev Dyn; 2022 Oct; 251(10):1684-1697. PubMed ID: 35582939 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis. Park J; Park OJ; Yoon WJ; Kim HJ; Choi KY; Cho TJ; Ryoo HM J Cell Biochem; 2012 Feb; 113(2):457-64. PubMed ID: 21928350 [TBL] [Abstract][Full Text] [Related]
19. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes. Motch Perrine SM; Stecko T; Neuberger T; Jabs EW; Ryan TM; Richtsmeier JT Front Hum Neurosci; 2017; 11():369. PubMed ID: 28790902 [TBL] [Abstract][Full Text] [Related]
20. Postnatal brain and skull growth in an Apert syndrome mouse model. Hill CA; Martínez-Abadías N; Motch SM; Austin JR; Wang Y; Jabs EW; Richtsmeier JT; Aldridge K Am J Med Genet A; 2013 Apr; 161A(4):745-57. PubMed ID: 23495236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]