These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1196 related articles for article (PubMed ID: 24580853)
1. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Ouyang L; Zhu L; Jiang J; Tang H Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Wang B; Zhang L; Zhou X Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():63-9. PubMed ID: 24220671 [TBL] [Abstract][Full Text] [Related]
3. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Huang GG; Han XX; Hossain MK; Ozaki Y Anal Chem; 2009 Jul; 81(14):5881-8. PubMed ID: 19518138 [TBL] [Abstract][Full Text] [Related]
4. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. Li J; Chen L; Lou T; Wang Y ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441 [TBL] [Abstract][Full Text] [Related]
5. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Sivashanmugan K; Liao JD; Liu BH; Yao CK Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168 [TBL] [Abstract][Full Text] [Related]
6. Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates. Selvakannan P; Ramanathan R; Plowman BJ; Sabri YM; Daima HK; O'Mullane AP; Bansal V; Bhargava SK Phys Chem Chem Phys; 2013 Aug; 15(31):12920-9. PubMed ID: 23812309 [TBL] [Abstract][Full Text] [Related]
7. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Alula MT; Yang J Talanta; 2014 Dec; 130():55-62. PubMed ID: 25159379 [TBL] [Abstract][Full Text] [Related]
8. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants. Ye Y; Chen J; Ding Q; Lin D; Dong R; Yang L; Liu J Nanoscale; 2013 Jul; 5(13):5887-95. PubMed ID: 23698652 [TBL] [Abstract][Full Text] [Related]
9. A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions. Huang GG; Hossain MK; Han XX; Ozaki Y Analyst; 2009 Dec; 134(12):2468-74. PubMed ID: 19918619 [TBL] [Abstract][Full Text] [Related]
10. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing. Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
12. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Zeiri L; Rechav K; Porat Z; Zeiri Y Appl Spectrosc; 2012 Mar; 66(3):294-9. PubMed ID: 22449306 [TBL] [Abstract][Full Text] [Related]
13. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Ren W; Zhu C; Wang E Nanoscale; 2012 Sep; 4(19):5902-9. PubMed ID: 22899096 [TBL] [Abstract][Full Text] [Related]
14. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Jiang Z; Gao P; Yang L; Huang C; Li Y Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of silver nanoparticles/single-walled carbon nanotubes composite for surface-enhanced Raman scattering. Zhao H; Fu H; Tian C; Ren Z; Tian G J Colloid Interface Sci; 2010 Nov; 351(2):343-7. PubMed ID: 20800849 [TBL] [Abstract][Full Text] [Related]
16. Quantitative detection of crystal violet using a surface-enhanced Raman scattering based on a flower-like HAp/Ag nanocomposite. Lin Y; Zheng M; Zhao X; Liu D; Gao J; Gong W; Xie S; Gao S; Yu Y; Lin J Anal Methods; 2021 Sep; 13(36):4143-4149. PubMed ID: 34554165 [TBL] [Abstract][Full Text] [Related]
17. Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine. López-Tocón I; Otero JC; Arenas JF; García-Ramos JV; Sánchez-Cortés S Langmuir; 2010 May; 26(10):6977-81. PubMed ID: 20205417 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC; Yang KH; Liu YC; Yu CC; Wu YH Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430 [TBL] [Abstract][Full Text] [Related]
19. Dealloying Ag-Al alloy to prepare nanoporous silver as a substrate for surface-enhanced Raman scattering: effects of structural evolution and surface modification. Qiu H; Zhang Z; Huang X; Qu Y Chemphyschem; 2011 Aug; 12(11):2118-23. PubMed ID: 21626645 [TBL] [Abstract][Full Text] [Related]
20. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]