BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 24580967)

  • 1. Enhanced rate performance of mesoporous Co(3)O(4) nanosheet supercapacitor electrodes by hydrous RuO(2) nanoparticle decoration.
    Rakhi RB; Chen W; Hedhili MN; Cha D; Alshareef HN
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4196-206. PubMed ID: 24580967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.
    Kumar R; Singh RK; Dubey PK; Singh DP; Yadav RM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15042-51. PubMed ID: 26086175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodeposition of spinel MnCo₂O₄ nanosheets for supercapacitor applications.
    Sahoo S; Naik KK; Rout CS
    Nanotechnology; 2015 Nov; 26(45):455401. PubMed ID: 26487175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors.
    Yang W; Gao Z; Ma J; Wang J; Zhang X; Liu L
    Dalton Trans; 2013 Nov; 42(44):15706-15. PubMed ID: 24048435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications.
    Hu W; Chen R; Xie W; Zou L; Qin N; Bao D
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19318-26. PubMed ID: 25322454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial RuO₂-ITO nanopillars for transparent supercapacitor application.
    Ryu I; Yang M; Kwon H; Park HK; Do YR; Lee SB; Yim S
    Langmuir; 2014 Feb; 30(6):1704-9. PubMed ID: 24479956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced electrochemical performance of hydrous RuO2/mesoporous carbon nanocomposites via nitrogen doping.
    Zhang C; Xie Y; Zhao M; Pentecost AE; Ling Z; Wang J; Long D; Ling L; Qiao W
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9751-9. PubMed ID: 24847730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CoNiO
    Cui Z; Wang T; Geng Z; Wan L; Liu Y; Xu S; Gao N; Li H; Yang M
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co₃O₄@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes.
    Ning J; Zhang T; He Y; Jia C; Saha P; Cheng Q
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Cobalt-Nickel-Zinc Ternary Oxide Nanosheet and Applications for Supercapacitor Electrode.
    Wu C; Chen L; Lou X; Ding M; Jia C
    Front Chem; 2018; 6():597. PubMed ID: 30555822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrous RuO(2)-Carbon Nanofiber electrodes with high mass and electrode-specific capacitance for efficient energy storage.
    Vellacheri R; Pillai VK; Kurungot S
    Nanoscale; 2012 Feb; 4(3):890-6. PubMed ID: 22159715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth.
    Xu J; Wang Q; Wang X; Xiang Q; Liang B; Chen D; Shen G
    ACS Nano; 2013 Jun; 7(6):5453-62. PubMed ID: 23647224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A metal-decorated nickel foam-inducing regulatable manganese dioxide nanosheet array architecture for high-performance supercapacitor applications.
    Tang PY; Zhao YQ; Wang YM; Xu CL
    Nanoscale; 2013 Sep; 5(17):8156-63. PubMed ID: 23887746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance supercapacitor electrode based on the unique ZnO@Co₃O4₄ core/shell heterostructures on nickel foam.
    Cai D; Huang H; Wang D; Liu B; Wang L; Liu Y; Li Q; Wang T
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15905-12. PubMed ID: 25153820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors.
    Wu J; Ouyang C; Dou S; Wang S
    Nanotechnology; 2015 Aug; 26(32):325401. PubMed ID: 26207017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous ZnO-Coated Co
    Gao M; Wang WK; Rong Q; Jiang J; Zhang YJ; Yu HQ
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23163-23173. PubMed ID: 29923396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance.
    Yang Q; Lu Z; Sun X; Liu J
    Sci Rep; 2013 Dec; 3():3537. PubMed ID: 24346687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.