These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24581087)

  • 1. Graphene nanopore support system for simultaneous high-resolution AFM imaging and conductance measurements.
    Connelly LS; Meckes B; Larkin J; Gillman AL; Wanunu M; Lal R
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5290-6. PubMed ID: 24581087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulated conducting cantilevered nanotips and two-chamber recording system for high resolution ion sensing AFM.
    Meckes B; Arce FT; Connelly LS; Lal R
    Sci Rep; 2014 Mar; 4():4454. PubMed ID: 24663394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanopore devices for DNA sensing.
    Merchant CA; Drndić M
    Methods Mol Biol; 2012; 870():211-26. PubMed ID: 22528266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing.
    Crick CR; Sze JY; Rosillo-Lopez M; Salzmann CG; Edel JB
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18188-94. PubMed ID: 26204996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA translocation through single-layer boron nitride nanopores.
    Gu Z; Zhang Y; Luan B; Zhou R
    Soft Matter; 2016 Jan; 12(3):817-23. PubMed ID: 26537824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
    Traversi F; Raillon C; Benameur SM; Liu K; Khlybov S; Tosun M; Krasnozhon D; Kis A; Radenovic A
    Nat Nanotechnol; 2013 Dec; 8(12):939-45. PubMed ID: 24240429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2).
    Lal S; Scarinci N; Perez PL; Cantero MDR; Cantiello HF
    PLoS One; 2018; 13(8):e0202029. PubMed ID: 30133487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.
    Ramachandran S; Arce FT; Patel NR; Quist AP; Cohen DA; Lal R
    Sci Rep; 2014 Mar; 4():4424. PubMed ID: 24651823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope.
    Aramesh M; Forró C; Dorwling-Carter L; Lüchtefeld I; Schlotter T; Ihle SJ; Shorubalko I; Hosseini V; Momotenko D; Zambelli T; Klotzsch E; Vörös J
    Nat Nanotechnol; 2019 Aug; 14(8):791-798. PubMed ID: 31308500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of graphene nanopore.
    Lee J; Yang Z; Zhou W; Pennycook SJ; Pantelides ST; Chisholm MF
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7522-6. PubMed ID: 24821802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1/f noise in graphene nanopores.
    Heerema SJ; Schneider GF; Rozemuller M; Vicarelli L; Zandbergen HW; Dekker C
    Nanotechnology; 2015 Feb; 26(7):074001. PubMed ID: 25629930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Model for Rapid and Accurate Determination of Nanopore Size via Conductance Measurement.
    Wen C; Zhang Z; Zhang SL
    ACS Sens; 2017 Oct; 2(10):1523-1530. PubMed ID: 28974095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong hydrophobic interaction between graphene oxide and supported lipid bilayers revealed by AFM.
    Hu X; Lei H; Zhang X; Zhang Y
    Microsc Res Tech; 2016 Aug; 79(8):721-6. PubMed ID: 27252153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecule-hugging graphene nanopores.
    Garaj S; Liu S; Golovchenko JA; Branton D
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12192-6. PubMed ID: 23836648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.