BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24581223)

  • 1. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration.
    Genini S; Guziewicz KE; Beltran WA; Aguirre GD
    BMC Genomics; 2014 Mar; 15(1):172. PubMed ID: 24581223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of tumor necrosis factor superfamily genes in early phases of photoreceptor degeneration.
    Genini S; Beltran WA; Aguirre GD
    PLoS One; 2013; 8(12):e85408. PubMed ID: 24367709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAM161A and TTC8 are Differentially Expressed in Non-Allelelic Early Onset Retinal Degeneration.
    Downs LM; Aguirre GD
    Adv Exp Med Biol; 2016; 854():201-7. PubMed ID: 26427412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration.
    Appelbaum T; Santana E; Aguirre GD
    PLoS One; 2017; 12(5):e0177224. PubMed ID: 28486508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonallelism of erd and prcd and exclusion of the canine RDS/peripherin gene as a candidate for both retinal degeneration loci.
    Ray K; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):783-94. PubMed ID: 8603863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration.
    Genini S; Zangerl B; Slavik J; Acland GM; Beltran WA; Aguirre GD
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):6038-50. PubMed ID: 20574030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreceptor proliferation and dysregulation of cell cycle genes in early onset inherited retinal degenerations.
    Gardiner KL; Downs L; Berta-Antalics AI; Santana E; Aguirre GD; Genini S
    BMC Genomics; 2016 Mar; 17():221. PubMed ID: 26969498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA Expression Patterns Involved in Amyloid Beta-Induced Retinal Degeneration.
    Huang P; Sun J; Wang F; Luo X; Feng J; Gu Q; Liu T; Sun X
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1726-1735. PubMed ID: 28324113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional microRNA targetome undergoes degeneration-induced shift in the retina.
    Chu-Tan JA; Cioanca AV; Feng ZP; Wooff Y; Schumann U; Aggio-Bruce R; Patel H; Rutar M; Hannan K; Panov K; Provis J; Natoli R
    Mol Neurodegener; 2021 Aug; 16(1):60. PubMed ID: 34465369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered transsulfuration pathway enzymes and redox homeostasis in inherited retinal degenerative diseases.
    Badiei A; Beltran WA; Aguirre GD
    Exp Eye Res; 2022 Feb; 215():108902. PubMed ID: 34954206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-dependent disease expression determines remodeling of the retinal mosaic in carriers of RPGR exon ORF15 mutations.
    Beltran WA; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3985-95. PubMed ID: 19255154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model.
    Desjarlais M; Rivera JC; Lahaie I; Cagnone G; Wirt M; Omri S; Chemtob S
    PLoS One; 2019; 14(6):e0218282. PubMed ID: 31188886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosegregation of codon 807 mutation of the canine rod cGMP phosphodiesterase beta gene and rcd1.
    Ray K; Baldwin VJ; Acland GM; Blanton SH; Aguirre GD
    Invest Ophthalmol Vis Sci; 1994 Dec; 35(13):4291-9. PubMed ID: 8002249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the APOH gene as a positional candidate for prcd in dogs.
    Gu W; Ray K; Pearce-Kelling S; Baldwin VJ; Langston AA; Ray J; Ostrander EA; Acland GM; Aguirre GD
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1229-37. PubMed ID: 10235557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration.
    Aggio-Bruce R; Chu-Tan JA; Wooff Y; Cioanca AV; Schumann U; Natoli R
    Mol Neurobiol; 2021 Feb; 58(2):835-854. PubMed ID: 33037565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa.
    Loscher CJ; Hokamp K; Kenna PF; Ivens AC; Humphries P; Palfi A; Farrar GJ
    Genome Biol; 2007; 8(11):R248. PubMed ID: 18034880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of microRNA gene regulation on the survival and function of mature cell types in the eye.
    Sundermeier TR; Palczewski K
    FASEB J; 2016 Jan; 30(1):23-33. PubMed ID: 26399786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa.
    Anasagasti A; Ezquerra-Inchausti M; Barandika O; Muñoz-Culla M; Caffarel MM; Otaegui D; López de Munain A; Ruiz-Ederra J
    Invest Ophthalmol Vis Sci; 2018 May; 59(6):2381-2392. PubMed ID: 29847644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CREB1/ATF1 activation in photoreceptor degeneration and protection.
    Beltran WA; Allore HG; Johnson E; Towle V; Tao W; Acland GM; Aguirre GD; Zeiss CJ
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5355-63. PubMed ID: 19643965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.
    Jones MK; Lu B; Saghizadeh M; Wang S
    Mol Vis; 2016; 22():472-90. PubMed ID: 27217715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.