These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Targeting antioxidant enzymes as a radiosensitizing strategy. Jiang H; Wang H; De Ridder M Cancer Lett; 2018 Dec; 438():154-164. PubMed ID: 30223069 [TBL] [Abstract][Full Text] [Related]
3. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879 [TBL] [Abstract][Full Text] [Related]
4. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Müller S Mol Microbiol; 2004 Sep; 53(5):1291-305. PubMed ID: 15387810 [TBL] [Abstract][Full Text] [Related]
5. Oxidant and antioxidant balance in the airways and airway diseases. Rahman I; Biswas SK; Kode A Eur J Pharmacol; 2006 Mar; 533(1-3):222-39. PubMed ID: 16500642 [TBL] [Abstract][Full Text] [Related]
7. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Hanschmann EM; Godoy JR; Berndt C; Hudemann C; Lillig CH Antioxid Redox Signal; 2013 Nov; 19(13):1539-605. PubMed ID: 23397885 [TBL] [Abstract][Full Text] [Related]
8. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Sun Y; St Clair DK; Xu Y; Crooks PA; St Clair WH Cancer Res; 2010 Apr; 70(7):2880-90. PubMed ID: 20233868 [TBL] [Abstract][Full Text] [Related]
9. Base excision repair, the redox environment and therapeutic implications. Storr SJ; Woolston CM; Martin SG Curr Mol Pharmacol; 2012 Jan; 5(1):88-101. PubMed ID: 22122466 [TBL] [Abstract][Full Text] [Related]
11. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Fujii J; Iuchi Y; Matsuki S; Ishii T Asian J Androl; 2003 Sep; 5(3):231-42. PubMed ID: 12937808 [TBL] [Abstract][Full Text] [Related]
12. Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells. Limoli CL; Giedzinski E; Baure J; Doctrow SR; Rola R; Fike JR Radiat Prot Dosimetry; 2006; 122(1-4):228-36. PubMed ID: 17166877 [TBL] [Abstract][Full Text] [Related]
13. Role of antioxidants in cancer therapy. Fuchs-Tarlovsky V Nutrition; 2013 Jan; 29(1):15-21. PubMed ID: 22784609 [TBL] [Abstract][Full Text] [Related]
14. Redox control of cellular function by thioredoxin; a new therapeutic direction in host defence. Nishinaka Y; Nakamura H; Masutani H; Yodoi J Arch Immunol Ther Exp (Warsz); 2001; 49(4):285-92. PubMed ID: 11726031 [TBL] [Abstract][Full Text] [Related]
15. Prx1 suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Kim YJ; Lee WS; Ip C; Chae HZ; Park EM; Park YM Cancer Res; 2006 Jul; 66(14):7136-42. PubMed ID: 16849559 [TBL] [Abstract][Full Text] [Related]
16. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Yao P; Chen X; Yan Y; Liu F; Zhang Y; Guo X; Xu B Free Radic Biol Med; 2014 Mar; 68():335-46. PubMed ID: 24389255 [TBL] [Abstract][Full Text] [Related]
17. Modulation of redox signal transduction pathways in the treatment of cancer. Greenberger JS; Kagan VE; Pearce L; Boriseniao G; Tyurina Y; Epperly MW Antioxid Redox Signal; 2001 Jun; 3(3):347-59. PubMed ID: 11491649 [TBL] [Abstract][Full Text] [Related]