These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 24582234)
1. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Torres Y; Lascano S; Bris J; Pavón J; Rodriguez JA Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():148-55. PubMed ID: 24582234 [TBL] [Abstract][Full Text] [Related]
2. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications. He G; Liu P; Tan Q; Jiang G J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173 [TBL] [Abstract][Full Text] [Related]
3. Bioactive macroporous titanium implants highly interconnected. Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071 [TBL] [Abstract][Full Text] [Related]
4. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
5. Preparation and properties of biomedical porous titanium alloys by gelcasting. Yang D; Shao H; Guo Z; Lin T; Fan L Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152 [TBL] [Abstract][Full Text] [Related]
6. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
7. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
8. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties. Jia J; Siddiq AR; Kennedy AR J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839 [TBL] [Abstract][Full Text] [Related]
9. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024 [TBL] [Abstract][Full Text] [Related]
10. Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Gagg G; Ghassemieh E; Wiria FE Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3858-64. PubMed ID: 23910288 [TBL] [Abstract][Full Text] [Related]
11. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Li X; Wang CT; Zhang WG; Li YC Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194 [TBL] [Abstract][Full Text] [Related]
12. Formation of microporous NiTi by transient liquid phase sintering of elemental powders. Ismail MH; Goodall R; Davies HA; Todd I Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1480-5. PubMed ID: 24364948 [TBL] [Abstract][Full Text] [Related]
13. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. Li F; Li J; Xu G; Liu G; Kou H; Zhou L J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351 [TBL] [Abstract][Full Text] [Related]
14. Formability and mechanical properties of porous titanium produced by a moldless process. Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible porous titanium scaffolds produced using a novel space holder technique. Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558 [TBL] [Abstract][Full Text] [Related]
16. Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications. Zhuravleva K; Chivu A; Teresiak A; Scudino S; Calin M; Schultz L; Eckert J; Gebert A Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2280-7. PubMed ID: 23498259 [TBL] [Abstract][Full Text] [Related]
17. Development and mechanical characterization of porous titanium bone substitutes. Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model. Gagg G; Ghassemieh E; Wiria FE Proc Inst Mech Eng H; 2013 Sep; 227(9):1020-6. PubMed ID: 23804952 [TBL] [Abstract][Full Text] [Related]
19. High strength, low stiffness, porous NiTi with superelastic properties. Greiner C; Oppenheimer SM; Dunand DC Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851 [TBL] [Abstract][Full Text] [Related]
20. Different models for simulation of mechanical behaviour of porous materials. Muñoz S; Castillo SM; Torres Y J Mech Behav Biomed Mater; 2018 Apr; 80():88-96. PubMed ID: 29414480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]