These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 24582239)
1. Gelatin-PMVE/MA composite scaffold promotes expansion of embryonic stem cells. Chhabra H; Gupta P; Verma PJ; Jadhav S; Bellare JR Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():184-94. PubMed ID: 24582239 [TBL] [Abstract][Full Text] [Related]
2. Chitosan-gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP-buffalo embryonic stem cells. Thein-Han WW; Saikhun J; Pholpramoo C; Misra RD; Kitiyanant Y Acta Biomater; 2009 Nov; 5(9):3453-66. PubMed ID: 19460465 [TBL] [Abstract][Full Text] [Related]
3. The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Hashemi SM; Soudi S; Shabani I; Naderi M; Soleimani M Biomaterials; 2011 Oct; 32(30):7363-74. PubMed ID: 21762983 [TBL] [Abstract][Full Text] [Related]
4. Modified hyaluronan hydrogels support the maintenance of mouse embryonic stem cells and human induced pluripotent stem cells. Liu Y; Charles LF; Zarembinski TI; Johnson KI; Atzet SK; Wesselschmidt RL; Wight ME; Kuhn LT Macromol Biosci; 2012 Aug; 12(8):1034-42. PubMed ID: 22730306 [TBL] [Abstract][Full Text] [Related]
5. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts. Orlova AA; Kotlyarova MS; Lavrenov VS; Volkova SV; Arkhipova AY Bull Exp Biol Med; 2014 Nov; 158(1):88-91. PubMed ID: 25403405 [TBL] [Abstract][Full Text] [Related]
6. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Wang S; Zhang Y; Wang H; Yin G; Dong Z Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. Maji K; Dasgupta S; Pramanik K; Bissoyi A Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
9. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture. Perestrelo AR; Grenha A; Rosa da Costa AM; Belo JA Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():336-44. PubMed ID: 24857501 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Baniasadi H; Ramazani S A A; Mashayekhan S Int J Biol Macromol; 2015 Mar; 74():360-6. PubMed ID: 25553968 [TBL] [Abstract][Full Text] [Related]
12. Preparation of P3HB4HB/(Gelatin + PVA) Composite Scaffolds by Coaxial Electrospinning and Its Biocompatibility Evaluation. Ma MX; Liu Q; Ye C; Grottkau B; Guo B; Song YF Biomed Res Int; 2017; 2017():9251806. PubMed ID: 29349086 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells. Rungsiyanont S; Dhanesuan N; Swasdison S; Kasugai S J Biomater Appl; 2012 Jul; 27(1):47-54. PubMed ID: 21343214 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Zhang F; He C; Cao L; Feng W; Wang H; Mo X; Wang J Int J Biol Macromol; 2011 Apr; 48(3):474-81. PubMed ID: 21255605 [TBL] [Abstract][Full Text] [Related]
15. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. Singh D; Zo SM; Kumar A; Han SS J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
17. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds. Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948 [TBL] [Abstract][Full Text] [Related]