BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24582369)

  • 1. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies.
    Krishnan C; Ranganathan R; Kantak SS; Dhaher YY; Rymer WZ
    Brain Stimul; 2014; 7(3):443-50. PubMed ID: 24582369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrence quantification analysis of surface electromyogram supports alterations in motor unit recruitment strategies by anodal transcranial direct current stimulation.
    Dutta A; Krishnan C; Kantak SS; Ranganathan R; Nitsche MA
    Restor Neurol Neurosci; 2015; 33(5):663-9. PubMed ID: 25791041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas.
    Cogiamanian F; Marceglia S; Ardolino G; Barbieri S; Priori A
    Eur J Neurosci; 2007 Jul; 26(1):242-9. PubMed ID: 17614951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitating myoelectric-control with transcranial direct current stimulation: a preliminary study in healthy humans.
    Dutta A; Paulus W; Nitsche MA
    J Neuroeng Rehabil; 2014 Feb; 11():13. PubMed ID: 24507410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of transcranial direct current stimulation on perception of effort in an isolated isometric elbow flexion task.
    Lampropoulou SI; Nowicky AV
    Motor Control; 2013 Oct; 17(4):412-26. PubMed ID: 24018733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement.
    Miyaguchi S; Onishi H; Kojima S; Sugawara K; Tsubaki A; Kirimoto H; Tamaki H; Yamamoto N
    Brain Res; 2013 Sep; 1529():83-91. PubMed ID: 23891715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional linkages between motor cortical cells and elbow flexor muscles. Evidence for and characteristics of postspike facilitation.
    Fourment A; Belhaj-Saïf A; Maton B
    J Neurophysiol; 1995 Jul; 74(1):130-41. PubMed ID: 7472318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation.
    Todd G; Taylor JL; Gandevia SC
    J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the precentral cortical command to elbow muscle fatigue.
    Belhaj-Saïf A; Fourment A; Maton B
    Exp Brain Res; 1996 Oct; 111(3):405-16. PubMed ID: 8911934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The orderly recruitment of motor units may be modified when a muscle is acting as an antagonist.
    Magnuson JR; Dalton BH; McNeil CJ
    J Appl Physiol (1985); 2023 Sep; 135(3):519-526. PubMed ID: 37439237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation.
    Dyke K; Kim S; Jackson GM; Jackson SR
    Brain Stimul; 2016; 9(6):819-825. PubMed ID: 27387569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles.
    Zijdewind I; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial direct current stimulation of SMA modulates anticipatory postural adjustments without affecting the primary movement.
    Bolzoni F; Bruttini C; Esposti R; Castellani C; Cavallari P
    Behav Brain Res; 2015 Sep; 291():407-413. PubMed ID: 26055201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm.
    McCambridge AB; Bradnam LV; Stinear CM; Byblow WD
    J Neurophysiol; 2011 Jun; 105(6):2937-42. PubMed ID: 21511707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity.
    Frazer A; Williams J; Spittles M; Rantalainen T; Kidgell D
    Muscle Nerve; 2016 Nov; 54(5):903-913. PubMed ID: 27065472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Anodal Transcranial Direct Current Stimulation on Quadriceps Maximal Voluntary Contraction, Corticospinal Excitability, and Voluntary Activation Levels.
    Kristiansen M; Thomsen MJ; Nørgaard J; Aaes J; Knudsen D; Voigt M
    J Strength Cond Res; 2022 Jun; 36(6):1540-1547. PubMed ID: 33677460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
    Laczó B; Antal A; Rothkegel H; Paulus W
    Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles.
    Semmler JG; Tucker KJ; Allen TJ; Proske U
    J Appl Physiol (1985); 2007 Sep; 103(3):979-89. PubMed ID: 17600154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.