BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 24582378)

  • 1. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft.
    Niu Y; Li L; Chen KC; Chen F; Liu X; Ye J; Li W; Xu K
    J Biomed Mater Res A; 2015 Jul; 103(7):2355-64. PubMed ID: 25410272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
    Li G; Li D; Niu Y; He T; Chen KC; Xu K
    J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits.
    Chung TW; Yang MC; Tseng CC; Sheu SH; Wang SS; Huang YY; Chen SD
    Biomaterials; 2011 Jan; 32(3):734-43. PubMed ID: 20888633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth.
    Hinüber C; Chwalek K; Pan-Montojo FJ; Nitschke M; Vogel R; Brünig H; Heinrich G; Werner C
    Acta Biomater; 2014 May; 10(5):2086-95. PubMed ID: 24406197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.
    Mobasseri A; Faroni A; Minogue BM; Downes S; Terenghi G; Reid AJ
    Tissue Eng Part A; 2015 Mar; 21(5-6):1152-62. PubMed ID: 25435096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melt-extruded guides for peripheral nerve regeneration. Part I: poly(epsilon-caprolactone).
    Chiono V; Vozzi G; Vozzi F; Salvadori C; Dini F; Carlucci F; Arispici M; Burchielli S; Di Scipio F; Geuna S; Fornaro M; Tos P; Nicolino S; Audisio C; Perroteau I; Chiaravalloti A; Domenici C; Giusti P; Ciardelli G
    Biomed Microdevices; 2009 Oct; 11(5):1037-50. PubMed ID: 19479170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).
    Li L; Liu X; Niu Y; Ye J; Huang S; Liu C; Xu K
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1200-1209. PubMed ID: 27059634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ester urethane) guides for peripheral nerve regeneration.
    Chiono V; Sartori S; Rechichi A; Tonda-Turo C; Vozzi G; Vozzi F; D'Acunto M; Salvadori C; Dini F; Barsotti G; Carlucci F; Burchielli S; Nicolino S; Audisio C; Perroteau I; Giusti P; Ciardelli G
    Macromol Biosci; 2011 Feb; 11(2):245-56. PubMed ID: 21104881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.
    Silvestri A; Sartori S; Boffito M; Mattu C; Di Rienzo AM; Boccafoschi F; Ciardelli G
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1002-13. PubMed ID: 24307433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning.
    Liu JJ; Wang CY; Wang JG; Ruan HJ; Fan CY
    J Biomed Mater Res A; 2011 Jan; 96(1):13-20. PubMed ID: 20949481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.
    Hausner T; Schmidhammer R; Zandieh S; Hopf R; Schultz A; Gogolewski S; Hertz H; Redl H
    Acta Neurochir Suppl; 2007; 100():69-72. PubMed ID: 17985549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds.
    Wang Z; Li M; Yu B; Cao L; Yang Q; Su J
    Int J Nanomedicine; 2012; 7():3123-31. PubMed ID: 22848159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit.
    Shahriari D; Shibayama M; Lynam DA; Wolf KJ; Kubota G; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    J Biomed Mater Res A; 2017 Dec; 105(12):3392-3399. PubMed ID: 28804998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations.
    Wang S; Yaszemski MJ; Knight AM; Gruetzmacher JA; Windebank AJ; Lu L
    Acta Biomater; 2009 Jun; 5(5):1531-42. PubMed ID: 19171506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium.
    Jiang W; Li L; Zhang D; Huang S; Jing Z; Wu Y; Zhao Z; Zhao L; Zhou S
    Acta Biomater; 2015 Oct; 25():240-52. PubMed ID: 26188325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.