BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24582432)

  • 21. Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells.
    Authier A; Farrand KJ; Broadley KW; Ancelet LR; Hunn MK; Stone S; McConnell MJ; Hermans IF
    Int J Cancer; 2015 Jun; 136(11):2566-78. PubMed ID: 25363661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives.
    Lin H; Liu C; Hu A; Zhang D; Yang H; Mao Y
    J Hematol Oncol; 2024 May; 17(1):31. PubMed ID: 38720342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance.
    Zhang L; Yi H; Xia XP; Zhao Y
    Autoimmunity; 2006 Jun; 39(4):269-76. PubMed ID: 16891215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory T cells: a review.
    Dasgupta A; Saxena R
    Natl Med J India; 2012; 25(6):341-51. PubMed ID: 23998865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.
    Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY
    J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance.
    Dummer CD; Carpio VN; Gonçalves LF; Manfro RC; Veronese FV
    Transpl Immunol; 2012 Jan; 26(1):1-10. PubMed ID: 21939765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro.
    Hishii M; Nitta T; Ishida H; Ebato M; Kurosu A; Yagita H; Sato K; Okumura K
    Neurosurgery; 1995 Dec; 37(6):1160-6; discussion 1166-7. PubMed ID: 8584157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of T-cell function by gliomas.
    Roszman T; Elliott L; Brooks W
    Immunol Today; 1991 Oct; 12(10):370-4. PubMed ID: 1958290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FGL2 as a Multimodality Regulator of Tumor-Mediated Immune Suppression and Therapeutic Target in Gliomas.
    Yan J; Kong LY; Hu J; Gabrusiewicz K; Dibra D; Xia X; Heimberger AB; Li S
    J Natl Cancer Inst; 2015 Aug; 107(8):. PubMed ID: 25971300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Cell Atlas Reveals Complexity of the Immunosuppressive Microenvironment of Initial and Recurrent Glioblastoma.
    Fu W; Wang W; Li H; Jiao Y; Huo R; Yan Z; Wang J; Wang S; Wang J; Chen D; Cao Y; Zhao J
    Front Immunol; 2020; 11():835. PubMed ID: 32457755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basic concepts in glioma immunology.
    Parney IF
    Adv Exp Med Biol; 2012; 746():42-52. PubMed ID: 22639158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells.
    Horie S; Sugita S; Futagami Y; Yamada Y; Mochizuki M
    Clin Immunol; 2010 Jul; 136(1):83-95. PubMed ID: 20350837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β.
    Lohr J; Ratliff T; Huppertz A; Ge Y; Dictus C; Ahmadi R; Grau S; Hiraoka N; Eckstein V; Ecker RC; Korff T; von Deimling A; Unterberg A; Beckhove P; Herold-Mende C
    Clin Cancer Res; 2011 Jul; 17(13):4296-308. PubMed ID: 21478334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of tregs in glioma-mediated immunosuppression: potential target for intervention.
    Humphries W; Wei J; Sampson JH; Heimberger AB
    Neurosurg Clin N Am; 2010 Jan; 21(1):125-37. PubMed ID: 19944972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer.
    Biller BJ; Elmslie RE; Burnett RC; Avery AC; Dow SW
    Vet Immunol Immunopathol; 2007 Mar; 116(1-2):69-78. PubMed ID: 17224188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of tolerance induced by transforming growth factor-beta-treated antigen-presenting cells: CD8 regulatory T cells inhibit the effector phase of the immune response in primed mice through a mechanism involving Fas ligand.
    Kosiewicz MM; Alard P; Liang S; Clark SL
    Int Immunol; 2004 May; 16(5):697-706. PubMed ID: 15096489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protease inhibitors interfere with the transforming growth factor-beta-dependent but not the transforming growth factor-beta-independent pathway of tumor cell-mediated immunosuppression.
    Huber D; Philipp J; Fontana A
    J Immunol; 1992 Jan; 148(1):277-84. PubMed ID: 1727872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of CD4+CD25+FOXP3+ regulatory T cells function in patients with common variable immunodeficiency.
    Arandi N; Mirshafiey A; Jeddi-Tehrani M; Abolhassani H; Sadeghi B; Mirminachi B; Shaghaghi M; Aghamohammadi A
    Cell Immunol; 2013 Feb; 281(2):129-33. PubMed ID: 23623844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combating immunosuppression in glioma.
    Vega EA; Graner MW; Sampson JH
    Future Oncol; 2008 Jun; 4(3):433-42. PubMed ID: 18518768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.