These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 24582663)
1. Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77K. Chukhutsina VU; Büchel C; van Amerongen H Biochim Biophys Acta; 2014 Jun; 1837(6):899-907. PubMed ID: 24582663 [TBL] [Abstract][Full Text] [Related]
2. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881 [TBL] [Abstract][Full Text] [Related]
3. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related]
4. Relaxation of cellular K Ahmad RA; Dietzel L Physiol Plant; 2017 Sep; 161(1):171-180. PubMed ID: 28664565 [TBL] [Abstract][Full Text] [Related]
5. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
6. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
7. Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Gundermann K; Büchel C Biochim Biophys Acta; 2012 Jul; 1817(7):1044-52. PubMed ID: 22440329 [TBL] [Abstract][Full Text] [Related]
8. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R; Ann Pinto E; Wilhelm C; Richter M J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213 [TBL] [Abstract][Full Text] [Related]
9. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Ghazaryan A; Akhtar P; Garab G; Lambrev PH; Büchel C Biochim Biophys Acta; 2016 Sep; 1857(9):1373-1379. PubMed ID: 27155390 [TBL] [Abstract][Full Text] [Related]
11. Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Beer A; Gundermann K; Beckmann J; Büchel C Biochemistry; 2006 Oct; 45(43):13046-53. PubMed ID: 17059221 [TBL] [Abstract][Full Text] [Related]
12. The fluorescence yield of the trimeric fucoxanthin-chlorophyll-protein FCPa in the diatom Cyclotella meneghiniana is dependent on the amount of bound diatoxanthin. Gundermann K; Büchel C Photosynth Res; 2008; 95(2-3):229-35. PubMed ID: 17912602 [TBL] [Abstract][Full Text] [Related]
13. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
14. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related]
15. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
16. Exploring the mechanism(s) of energy dissipation in the light harvesting complex of the photosynthetic algae Cyclotella meneghiniana. Ramanan C; Berera R; Gundermann K; van Stokkum I; Büchel C; van Grondelle R Biochim Biophys Acta; 2014 Sep; 1837(9):1507-13. PubMed ID: 24576451 [TBL] [Abstract][Full Text] [Related]
17. Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Chukhutsina VU; Büchel C; van Amerongen H Biochim Biophys Acta; 2013 Jan; 1827(1):10-8. PubMed ID: 23036902 [TBL] [Abstract][Full Text] [Related]
18. In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Lavaud J; Kroth PG Plant Cell Physiol; 2006 Jul; 47(7):1010-6. PubMed ID: 16699176 [TBL] [Abstract][Full Text] [Related]
19. Energy dissipation mechanisms in the FCPb light-harvesting complex of the diatom Cyclotella meneghiniana. Elnour HMAM; Dietzel L; Ramanan C; Büchel C; van Grondelle R; Krüger TPJ Biochim Biophys Acta Bioenerg; 2018 Oct; 1859(10):1151-1160. PubMed ID: 30056090 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]