These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24582709)
1. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels. Chen J; Tomich JM Biochim Biophys Acta; 2014 Sep; 1838(9):2319-25. PubMed ID: 24582709 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of two pore-forming peptides: consequences of introducing a C-terminal tryptophan. Herrera AI; Al-Rawi A; Cook GA; Gao J; Iwamoto T; Prakash O; Tomich JM; Chen J Proteins; 2010 Aug; 78(10):2238-50. PubMed ID: 20544961 [TBL] [Abstract][Full Text] [Related]
3. Effect of diaminopropionic acid (Dap) on the biophysical properties of a modified synthetic channel-forming peptide. Bukovnik U; Sala-Rabanal M; Francis S; Frazier SJ; Schultz BD; Nichols CG; Tomich JM Mol Pharm; 2013 Oct; 10(10):3959-66. PubMed ID: 24010543 [TBL] [Abstract][Full Text] [Related]
4. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure. Reddy GL; Iwamoto T; Tomich JM; Montal M J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901 [TBL] [Abstract][Full Text] [Related]
5. Distinct structural elements that direct solution aggregation and membrane assembly in the channel-forming peptide M2GlyR. Broughman JR; Shank LP; Takeguchi W; Schultz BD; Iwamoto T; Mitchell KE; Tomich JM Biochemistry; 2002 Jun; 41(23):7350-8. PubMed ID: 12044167 [TBL] [Abstract][Full Text] [Related]
6. Activity and structural comparisons of solution associating and monomeric channel-forming peptides derived from the glycine receptor m2 segment. Cook GA; Prakash O; Zhang K; Shank LP; Takeguchi WA; Robbins A; Gong YX; Iwamoto T; Schultz BD; Tomich JM Biophys J; 2004 Mar; 86(3):1424-35. PubMed ID: 14990471 [TBL] [Abstract][Full Text] [Related]
7. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels. Jun I; Cheng MH; Sim E; Jung J; Suh BL; Kim Y; Son H; Park K; Kim CH; Yoon JH; Whitcomb DC; Bahar I; Lee MG J Physiol; 2016 Jun; 594(11):2929-55. PubMed ID: 26663196 [TBL] [Abstract][Full Text] [Related]
8. NH(2)-terminal modification of a channel-forming peptide increases capacity for epithelial anion secretion. Broughman JR; Mitchell KE; Sedlacek RL; Iwamoto T; Tomich JM; Schultz BD Am J Physiol Cell Physiol; 2001 Mar; 280(3):C451-8. PubMed ID: 11171563 [TBL] [Abstract][Full Text] [Related]
9. Structural and biophysical properties of a synthetic channel-forming peptide: designing a clinically relevant anion selective pore. Bukovnik U; Gao J; Cook GA; Shank LP; Seabra MB; Schultz BD; Iwamoto T; Chen J; Tomich JM Biochim Biophys Acta; 2012 Apr; 1818(4):1039-48. PubMed ID: 21835162 [TBL] [Abstract][Full Text] [Related]
10. Structural implications of placing cationic residues at either the NH2- or COOH-terminus in a pore-forming synthetic peptide. Broughman JR; Shank LP; Prakash O; Schultz BD; Iwamoto T; Tomich JM; Mitchell K J Membr Biol; 2002 Nov; 190(2):93-103. PubMed ID: 12474074 [TBL] [Abstract][Full Text] [Related]
11. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. Moorhouse AJ; Keramidas A; Zaykin A; Schofield PR; Barry PH J Gen Physiol; 2002 May; 119(5):411-25. PubMed ID: 11981021 [TBL] [Abstract][Full Text] [Related]
12. Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. Ivanov I; Cheng X; Sine SM; McCammon JA J Am Chem Soc; 2007 Jul; 129(26):8217-24. PubMed ID: 17552523 [TBL] [Abstract][Full Text] [Related]
13. Aqueous solubilization of transmembrane peptide sequences with retention of membrane insertion and function. Tomich JM; Wallace D; Henderson K; Mitchell KE; Radke G; Brandt R; Ambler CA; Scott AJ; Grantham J; Sullivan L; Iwamoto T Biophys J; 1998 Jan; 74(1):256-67. PubMed ID: 9449327 [TBL] [Abstract][Full Text] [Related]
14. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics. Cheng MH; Cascio M; Coalson RD Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389 [TBL] [Abstract][Full Text] [Related]
15. Anion conductance selectivity mechanism of the CFTR chloride channel. Linsdell P Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604 [TBL] [Abstract][Full Text] [Related]
16. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. Keramidas A; Moorhouse AJ; Pierce KD; Schofield PR; Barry PH J Gen Physiol; 2002 May; 119(5):393-410. PubMed ID: 11981020 [TBL] [Abstract][Full Text] [Related]
17. Electrostatics and the ion selectivity of ligand-gated channels. Adcock C; Smith GR; Sansom MS Biophys J; 1998 Sep; 75(3):1211-22. PubMed ID: 9726923 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Allen TW; Andersen OS; Roux B Biophys Chem; 2006 Dec; 124(3):251-67. PubMed ID: 16781050 [TBL] [Abstract][Full Text] [Related]
19. Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels. Bednarczyk P; Szewczyk A; Dołowy K Acta Biochim Pol; 2002; 49(4):869-75. PubMed ID: 12545193 [TBL] [Abstract][Full Text] [Related]
20. A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel. Qu W; Moorhouse AJ; Chandra M; Pierce KD; Lewis TM; Barry PH J Gen Physiol; 2006 Apr; 127(4):375-89. PubMed ID: 16533895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]