These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24582842)

  • 1. Wrist kinematic coupling and performance during functional tasks: effects of constrained motion.
    Garg R; Kraszewski AP; Stoecklein HH; Syrkin G; Hillstrom HJ; Backus S; Lenhoff ML; Wolff AL; Crisco JJ; Wolfe SW
    J Hand Surg Am; 2014 Apr; 39(4):634-642.e1. PubMed ID: 24582842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surgical Treatments for Scapholunate Advanced Collapse Wrist: Kinematics and Functional Performance.
    Wolff AL; Garg R; Kraszewski AP; Hillstrom HJ; Hafer JF; Backus SI; Lenhoff ML; Wolfe SW
    J Hand Surg Am; 2015 Aug; 40(8):1547-53. PubMed ID: 26092664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carpal and forearm kinematics during a simulated hammering task.
    Leventhal EL; Moore DC; Akelman E; Wolfe SW; Crisco JJ
    J Hand Surg Am; 2010 Jul; 35(7):1097-104. PubMed ID: 20610055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling between wrist flexion-extension and radial-ulnar deviation.
    Li ZM; Kuxhaus L; Fisk JA; Christophel TH
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):177-83. PubMed ID: 15621323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks.
    Murgia A; Kyberd PJ; Chappell PH; Light CM
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):248-54. PubMed ID: 15003339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo length changes of carpal ligaments of the wrist during dart-throwing motion.
    Tang JB; Gu XK; Xu J; Gu JH
    J Hand Surg Am; 2011 Feb; 36(2):284-90. PubMed ID: 21276892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ulnar Extension Coupling in Functional Wrist Kinematics During Hand Activities of Daily Living.
    Nadeem M; Loss JG; Li ZM; Seitz WH
    J Hand Surg Am; 2022 Feb; 47(2):187.e1-187.e13. PubMed ID: 34049729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical measurement of the dart throwing motion of the wrist: variability, accuracy and correction.
    Vardakastani V; Bell H; Mee S; Brigstocke G; Kedgley AE
    J Hand Surg Eur Vol; 2018 Sep; 43(7):723-731. PubMed ID: 29754522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Measurement of Wrist Movements during the Dart-Throwing Motion Using Inertial Measurement Units.
    Fischer G; Wirth MA; Balocco S; Calcagni M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of an objective device for assessing circumductive wrist motion.
    Franko OI; Lal S; Pauyo T; Alexander M; Zurakowski D; Day C
    J Hand Surg Am; 2008 Oct; 33(8):1293-300. PubMed ID: 18929191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated radioscapholunate fusion alters carpal kinematics while preserving dart-thrower's motion.
    Calfee RP; Leventhal EL; Wilkerson J; Moore DC; Akelman E; Crisco JJ
    J Hand Surg Am; 2008 Apr; 33(4):503-10. PubMed ID: 18406953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo radiocarpal kinematics and the dart thrower's motion.
    Crisco JJ; Coburn JC; Moore DC; Akelman E; Weiss AC; Wolfe SW
    J Bone Joint Surg Am; 2005 Dec; 87(12):2729-2740. PubMed ID: 16322624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.
    Brigstocke GH; Hearnden A; Holt C; Whatling G
    J Hand Surg Eur Vol; 2014 May; 39(4):373-8. PubMed ID: 22976876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vivo three-dimensional motion analysis of the wrist during dart-throwing motion after midcarpal fusion and radioscapholunate fusion.
    Reissner L; Politikou O; Fischer G; Calcagni M
    J Hand Surg Eur Vol; 2020 Jun; 45(5):501-507. PubMed ID: 31996079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2007 IFSSH committee report of wrist biomechanics committee: biomechanics of the so-called dart-throwing motion of the wrist.
    Moritomo H; Apergis EP; Herzberg G; Werner FW; Wolfe SW; Garcia-Elias M
    J Hand Surg Am; 2007 Nov; 32(9):1447-53. PubMed ID: 17996783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical motion capture accuracy is task-dependent in assessing wrist motion.
    McHugh B; Akhbari B; Morton AM; Moore DC; Crisco JJ
    J Biomech; 2021 May; 120():110362. PubMed ID: 33752132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method to replicate the kinematics of the carpus using a six degree-of-freedom robot.
    Fraysse F; Costi JJ; Stanley RM; Ding B; McGuire D; Eng K; Bain GI; Thewlis D
    J Biomech; 2014 Mar; 47(5):1091-8. PubMed ID: 24461354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation.
    Neu CP; Crisco JJ; Wolfe SW
    J Biomech; 2001 Nov; 34(11):1429-38. PubMed ID: 11672717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional ranges of motion of the wrist joint.
    Ryu JY; Cooney WP; Askew LJ; An KN; Chao EY
    J Hand Surg Am; 1991 May; 16(3):409-19. PubMed ID: 1861019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.