These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24582984)
1. Activity of caffeic acid derivatives against Candida albicans biofilm. De Vita D; Friggeri L; D'Auria FD; Pandolfi F; Piccoli F; Panella S; Palamara AT; Simonetti G; Scipione L; Di Santo R; Costi R; Tortorella S Bioorg Med Chem Lett; 2014 Mar; 24(6):1502-5. PubMed ID: 24582984 [TBL] [Abstract][Full Text] [Related]
2. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. De Vita D; Simonetti G; Pandolfi F; Costi R; Di Santo R; D'Auria FD; Scipione L Bioorg Med Chem Lett; 2016 Dec; 26(24):5931-5935. PubMed ID: 27838185 [TBL] [Abstract][Full Text] [Related]
3. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Braga PC; Culici M; Alfieri M; Dal Sasso M Int J Antimicrob Agents; 2008 May; 31(5):472-7. PubMed ID: 18329858 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Sardi JC; Gullo FP; Freires IA; Pitangui NS; Segalla MP; Fusco-Almeida AM; Rosalen PL; Regasini LO; Mendes-Giannini MJ Diagn Microbiol Infect Dis; 2016 Dec; 86(4):387-391. PubMed ID: 27638348 [TBL] [Abstract][Full Text] [Related]
5. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Lima TC; Ferreira AR; Silva DF; Lima EO; de Sousa DP Nat Prod Res; 2018 Mar; 32(5):572-575. PubMed ID: 28423912 [TBL] [Abstract][Full Text] [Related]
6. Searching for new agents active against Candida albicans biofilm: A series of indole derivatives, design, synthesis and biological evaluation. Pandolfi F; D'Acierno F; Bortolami M; De Vita D; Gallo F; De Meo A; Di Santo R; Costi R; Simonetti G; Scipione L Eur J Med Chem; 2019 Mar; 165():93-106. PubMed ID: 30660829 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, anti-fungal and 1,3-β-D-glucan synthase inhibitory activities of caffeic and quinic acid derivatives. Ma CM; Abe T; Komiyama T; Wang W; Hattori M; Daneshtalab M Bioorg Med Chem; 2010 Oct; 18(19):7009-14. PubMed ID: 20813534 [TBL] [Abstract][Full Text] [Related]
9. In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Yu Q; Ding X; Xu N; Cheng X; Qian K; Zhang B; Xing L; Li M Int J Antimicrob Agents; 2013 Feb; 41(2):179-82. PubMed ID: 23265915 [TBL] [Abstract][Full Text] [Related]
10. Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. Khan MS; Ahmad I J Ethnopharmacol; 2012 Mar; 140(2):416-23. PubMed ID: 22326355 [TBL] [Abstract][Full Text] [Related]
11. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. Vila TV; Ishida K; de Souza W; Prousis K; Calogeropoulou T; Rozental S J Antimicrob Chemother; 2013 Jan; 68(1):113-25. PubMed ID: 22995097 [TBL] [Abstract][Full Text] [Related]
12. Susceptibility of Candida biofilms to histatin 5 and fluconazole. Konopka K; Dorocka-Bobkowska B; Gebremedhin S; Düzgüneş N Antonie Van Leeuwenhoek; 2010 May; 97(4):413-7. PubMed ID: 20140514 [TBL] [Abstract][Full Text] [Related]
13. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475 [TBL] [Abstract][Full Text] [Related]
14. In vitro activity of 2-cyclohexylidenhydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of Candida spp. and fluconazole-resistant Candida albicans. De Logu A; Saddi M; Cardia MC; Borgna R; Sanna C; Saddi B; Maccioni E J Antimicrob Chemother; 2005 May; 55(5):692-8. PubMed ID: 15772140 [TBL] [Abstract][Full Text] [Related]
15. Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: an ultrastructural study. Torey A; Sasidharan S Eur Rev Med Pharmacol Sci; 2011 Aug; 15(8):875-82. PubMed ID: 21845797 [TBL] [Abstract][Full Text] [Related]
16. Chlorhexidine-impregnated PEM/THFM polymer exhibits superior activity to fluconazole-impregnated polymer against Candida albicans biofilm formation. Salim N; Silikas N; Satterthwaite JD; Moore C; Ramage G; Rautemaa R Int J Antimicrob Agents; 2013 Feb; 41(2):193-6. PubMed ID: 23127479 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole. Dai L; Zang C; Tian S; Liu W; Tan S; Cai Z; Ni T; An M; Li R; Gao Y; Zhang D; Jiang Y Bioorg Med Chem Lett; 2015 Jan; 25(1):34-7. PubMed ID: 25466190 [TBL] [Abstract][Full Text] [Related]
18. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Messier C; Grenier D Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543 [TBL] [Abstract][Full Text] [Related]
19. Utilising polyphenols for the clinical management of Candida albicans biofilms. Shahzad M; Sherry L; Rajendran R; Edwards CA; Combet E; Ramage G Int J Antimicrob Agents; 2014 Sep; 44(3):269-73. PubMed ID: 25104135 [TBL] [Abstract][Full Text] [Related]
20. [In vitro biofilm formation and relationship with antifungal resistance of Candida spp. isolated from vaginal and intrauterine device string samples of women with vaginal complaints]. Calışkan S; Keçeli Özcan S; Cınar S; Corakçı A; Calışkan E Mikrobiyol Bul; 2011 Oct; 45(4):697-706. PubMed ID: 22090300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]