BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24583023)

  • 1. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns.
    Arcila ML; Betizeau M; Cambronne XA; Guzman E; Doerflinger N; Bouhallier F; Zhou H; Wu B; Rani N; Bassett DS; Borello U; Huissoud C; Goodman RH; Dehay C; Kosik KS
    Neuron; 2014 Mar; 81(6):1255-1262. PubMed ID: 24583023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The outer subventricular zone and primate-specific cortical complexification.
    Dehay C; Kennedy H; Kosik KS
    Neuron; 2015 Feb; 85(4):683-94. PubMed ID: 25695268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation.
    Tomasello U; Klingler E; Niquille M; Mule N; Santinha AJ; de Vevey L; Prados J; Platt RJ; Borrell V; Jabaudon D; Dayer A
    Cell Rep; 2022 Feb; 38(7):110381. PubMed ID: 35172154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate.
    Betizeau M; Cortay V; Patti D; Pfister S; Gautier E; Bellemin-Ménard A; Afanassieff M; Huissoud C; Douglas RJ; Kennedy H; Dehay C
    Neuron; 2013 Oct; 80(2):442-57. PubMed ID: 24139044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evolution of the primate neocortex from a progenitor cell perspective.
    Dehay C; Huttner WB
    Development; 2024 Feb; 151(4):. PubMed ID: 38369736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex.
    Dehay C; Giroud P; Berland M; Smart I; Kennedy H
    Nature; 1993 Dec; 366(6454):464-6. PubMed ID: 8247154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum.
    Rash BG; Duque A; Morozov YM; Arellano JI; Micali N; Rakic P
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7089-7094. PubMed ID: 30894491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of primate neurogenesis and the deployment of top-down generative networks in the cortical hierarchy.
    Kennedy H; Wianny F; Dehay C
    Curr Opin Neurobiol; 2021 Feb; 66():69-76. PubMed ID: 33099180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of New miRNAs and Cerebro-Cortical Development.
    Kosik KS; Nowakowski T
    Annu Rev Neurosci; 2018 Jul; 41():119-137. PubMed ID: 29618285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental remodeling of primate visual cortical pathways.
    Barone P; Dehay C; Berland M; Bullier J; Kennedy H
    Cereb Cortex; 1995; 5(1):22-38. PubMed ID: 7719128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.
    Martínez-Cerdeño V; Cunningham CL; Camacho J; Antczak JL; Prakash AN; Cziep ME; Walker AI; Noctor SC
    PLoS One; 2012; 7(1):e30178. PubMed ID: 22272298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs and epigenetics in adult neurogenesis.
    Wakabayashi T; Hidaka R; Fujimaki S; Asashima M; Kuwabara T
    Adv Genet; 2014; 86():27-44. PubMed ID: 25172344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.
    García-Moreno F; Vasistha NA; Trevia N; Bourne JA; Molnár Z
    Cereb Cortex; 2012 Feb; 22(2):482-92. PubMed ID: 22114081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial Migration Dynamics Is Modulated in a Laminar and Area-Specific Manner During Primate Corticogenesis.
    Cortay V; Delaunay D; Patti D; Gautier E; Doerflinger N; Giroud P; Knoblauch K; Huissoud C; Kennedy H; Dehay C
    Front Cell Dev Biol; 2020; 8():588814. PubMed ID: 33178700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cannabinoid Type 1 Receptor is Undetectable in Rodent and Primate Cerebral Neural Stem Cells but Participates in Radial Neuronal Migration.
    Morozov YM; Mackie K; Rakic P
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33212822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression.
    Watanabe N; Kageyama R; Ohtsuka T
    Development; 2015 Jul; 142(13):2278-90. PubMed ID: 26041766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced, lamina-specific deletion of neurons in the primate visual cortex.
    Algan O; Rakic P
    J Comp Neurol; 1997 May; 381(3):335-52. PubMed ID: 9133572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the regulatory roles of microRNAs in adult neurogenesis.
    Esteves M; Serra-Almeida C; Saraiva C; Bernardino L
    Curr Opin Pharmacol; 2020 Feb; 50():38-45. PubMed ID: 31865131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors.
    Coolen M; Thieffry D; Drivenes Ø; Becker TS; Bally-Cuif L
    Dev Cell; 2012 May; 22(5):1052-64. PubMed ID: 22595676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.