These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24583023)

  • 21. Evolution of an X-linked primate-specific micro RNA cluster.
    Li J; Liu Y; Dong D; Zhang Z
    Mol Biol Evol; 2010 Mar; 27(3):671-83. PubMed ID: 19933172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promotion of embryonic cortico-cerebral neuronogenesis by miR-124.
    Maiorano NA; Mallamaci A
    Neural Dev; 2009 Nov; 4():40. PubMed ID: 19883498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors.
    Shitamukai A; Konno D; Matsuzaki F
    J Neurosci; 2011 Mar; 31(10):3683-95. PubMed ID: 21389223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals.
    Mizuguchi K; Horiike T; Matsumoto N; Ichikawa Y; Shinmyo Y; Kawasaki H
    Neurochem Res; 2018 May; 43(5):1075-1085. PubMed ID: 29616442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global coevolution of human microRNAs and their target genes.
    Barbash S; Shifman S; Soreq H
    Mol Biol Evol; 2014 May; 31(5):1237-47. PubMed ID: 24600049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stage-specific modulation of cortical neuronal development by Mmu-miR-134.
    Gaughwin P; Ciesla M; Yang H; Lim B; Brundin P
    Cereb Cortex; 2011 Aug; 21(8):1857-69. PubMed ID: 21228099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organization and interareal networks in the primate cortex.
    Kennedy H; Dehay C
    Prog Brain Res; 2012; 195():341-60. PubMed ID: 22230635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey.
    Smart IH; Dehay C; Giroud P; Berland M; Kennedy H
    Cereb Cortex; 2002 Jan; 12(1):37-53. PubMed ID: 11734531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression of D1 and D5 dopamine receptors in the fetal primate cerebral wall.
    Wang F; Bergson C; Howard RL; Lidow MS
    Cereb Cortex; 1997 Dec; 7(8):711-21. PubMed ID: 9408035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of cortical neurogenesis.
    Abdel-Mannan O; Cheung AF; Molnár Z
    Brain Res Bull; 2008 Mar; 75(2-4):398-404. PubMed ID: 18331905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Subventricular Zone: A Key Player in Human Neocortical Development.
    Ortega JA; Memi F; Radonjic N; Filipovic R; Bagasrawala I; Zecevic N; Jakovcevski I
    Neuroscientist; 2018 Apr; 24(2):156-170. PubMed ID: 29254416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Timing of major ontogenetic events in the visual cortex of the rhesus monkey.
    Rakic P
    UCLA Forum Med Sci; 1975; (18):3-40. PubMed ID: 812226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis.
    Nielsen JA; Lau P; Maric D; Barker JL; Hudson LD
    BMC Neurosci; 2009 Aug; 10():98. PubMed ID: 19689821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational identification and characterization of primate-specific microRNAs in human genome.
    Lin S; Cheung WK; Chen S; Lu G; Wang Z; Xie D; Li K; Lin MC; Kung HF
    Comput Biol Chem; 2010 Aug; 34(4):232-41. PubMed ID: 20863765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific microRNAs modulate embryonic stem cell-derived neurogenesis.
    Krichevsky AM; Sonntag KC; Isacson O; Kosik KS
    Stem Cells; 2006 Apr; 24(4):857-64. PubMed ID: 16357340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine-tuning neural gene expression with microRNAs.
    Schratt G
    Curr Opin Neurobiol; 2009 Apr; 19(2):213-9. PubMed ID: 19539460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex.
    De Pietri Tonelli D; Pulvers JN; Haffner C; Murchison EP; Hannon GJ; Huttner WB
    Development; 2008 Dec; 135(23):3911-21. PubMed ID: 18997113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey.
    Elston GN; Rosa MG
    J Neurosci; 2000 Dec; 20(24):RC117. PubMed ID: 11125016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of neural precursor cell types in the prenatal macaque cerebral cortex exists largely within the astroglial cell lineage.
    Cunningham CL; Martínez-Cerdeño V; Noctor SC
    PLoS One; 2013; 8(5):e63848. PubMed ID: 23724007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying microRNAs and Their Editing Sites in
    Wang Q; Zhao Z; Zhang X; Lu C; Ren S; Li S; Guo J; Liao P; Jiang B; Zheng Y
    Cells; 2019 Jul; 8(7):. PubMed ID: 31284505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.