BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 24583385)

  • 1. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.
    Kaveh M; Chayjan RA
    Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods.
    Chayjan RA; Salari K; Barikloo H
    Acta Sci Pol Technol Aliment; 2012 Apr; 11(2):131-48. PubMed ID: 22493156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Quality of Infrared Rotary Dried Terebinth (
    Kaveh M; Abbaspour-Gilandeh Y; Taghinezhad E; Witrowa-Rajchert D; Nowacka M
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.
    Rodríguez J; Clemente G; Sanjuán N; Bon J
    Food Sci Technol Int; 2014 Jan; 20(1):13-22. PubMed ID: 23733820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.
    Onwude DI; Hashim N; Abdan K; Janius R; Chen G
    J Sci Food Agric; 2018 Mar; 98(4):1310-1324. PubMed ID: 28758207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.
    Taheri-Garavand A; Karimi F; Karimi M; Lotfi V; Khoobbakht G
    Food Sci Technol Int; 2018 Jun; 24(4):277-291. PubMed ID: 29231074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.
    Aral S; Beşe AV
    Food Chem; 2016 Nov; 210():577-84. PubMed ID: 27211684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of mooseer (A. hirtifolium Boiss.) dehydration under infrared conditions.
    Chayjan RA; Fealekari M
    Acta Sci Pol Technol Aliment; 2017; 16(2):157-170. PubMed ID: 28703956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and experimental analysis of rice drying in new fluidized bed assisted hybrid infrared-microwave dryer.
    Nanvakenari S; Movagharnejad K; Latifi A
    Food Res Int; 2022 Sep; 159():111617. PubMed ID: 35940808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study.
    Cao ZZ; Zhou LY; Bi JF; Yi JY; Chen QQ; Wu XY; Zheng JK; Li SR
    J Sci Food Agric; 2016 Aug; 96(10):3596-603. PubMed ID: 26612038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of berry size and sodium hydroxide pretreatment on the drying characteristics of blueberries under infrared radiation heating.
    Shi J; Pan Z; McHugh TH; Wood D; Zhu Y; Avena-Bustillos RJ; Hirschberg E
    J Food Sci; 2008 Aug; 73(6):E259-65. PubMed ID: 19241546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of multilayer perceptron neural networks and adaptive neuro-fuzzy inference systems for the mass transfer modeling of Echium amoenum Fisch. & C. A. Mey.
    Chasiotis V; Nadi F; Filios A
    J Sci Food Agric; 2021 Dec; 101(15):6514-6524. PubMed ID: 34000064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments of artificial intelligence in drying of fresh food: A review.
    Sun Q; Zhang M; Mujumdar AS
    Crit Rev Food Sci Nutr; 2019; 59(14):2258-2275. PubMed ID: 29493285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ohmic pre-drying of tomato paste.
    Hosainpour A; Darvishi H; Nargesi F; Fadavi A
    Food Sci Technol Int; 2014 Apr; 20(3):193-204. PubMed ID: 23744116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders.
    Dhalsamant K
    J Food Sci; 2021 Aug; 86(8):3384-3402. PubMed ID: 34287892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes.
    Tiwari S; Ravi R; Bhattacharya S
    J Food Sci; 2012 Jul; 77(7):S263-73. PubMed ID: 22708654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices.
    Sadeghi M; Mirzabeigi Kesbi O; Mireei SA
    J Sci Food Agric; 2013 Feb; 93(3):471-8. PubMed ID: 22806586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network.
    Nazghelichi T; Kianmehr MH; Aghbashlo M
    J Food Sci Technol; 2011 Oct; 48(5):542-50. PubMed ID: 23572786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process optimization and ethanol use for obtaining white and red dragon fruit powder by foam mat drying.
    Macedo LL; Corrêa JLG; Araújo CDS; Vimercati WC; Pio LAS
    J Food Sci; 2021 Feb; 86(2):426-433. PubMed ID: 33438227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.