BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24583461)

  • 1. Bioartificial fabrication of regenerating blood vessel substitutes: requirements and current strategies.
    Wilhelmi M; Jockenhoevel S; Mela P
    Biomed Tech (Berl); 2014 Jun; 59(3):185-95. PubMed ID: 24583461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Approaches to Myocardial and Vascular Tissue Engineering.
    Akintewe OO; Roberts EG; Rim NG; Ferguson MAH; Wong JY
    Annu Rev Biomed Eng; 2017 Jun; 19():389-414. PubMed ID: 28471698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds.
    Laschke MW; Schank TE; Scheuer C; Kleer S; Schuler S; Metzger W; Eglin D; Alini M; Menger MD
    Acta Biomater; 2013 Jun; 9(6):6876-84. PubMed ID: 23415749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels.
    He S; Xia T; Wang H; Wei L; Luo X; Li X
    Acta Biomater; 2012 Jul; 8(7):2659-69. PubMed ID: 22484697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds in vascular regeneration: current status.
    Thottappillil N; Nair PD
    Vasc Health Risk Manag; 2015; 11():79-91. PubMed ID: 25632236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of microtechnology and nanotechnology in fabricating vascularized tissues.
    Obregón R; Ramón-Azcón J; Ahadian S; Shiku H; Bae H; Ramalingam M; Matsue T
    J Nanosci Nanotechnol; 2014 Jan; 14(1):487-500. PubMed ID: 24730277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells.
    Fioretta ES; Fledderus JO; Burakowska-Meise EA; Baaijens FP; Verhaar MC; Bouten CV
    Macromol Biosci; 2012 May; 12(5):577-90. PubMed ID: 22566363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fabrication of a blood vessel scaffold with a combined polymer for tissue engineering].
    Pan Y; Huang W; Ai YF; Xiong M; Zhang LX; Peng P
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2003 Jan; 19(1):44-6. PubMed ID: 12778796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arterial tissue regeneration for pediatric applications: inspiration from up-to-date tissue-engineered vascular bypass grafts.
    Cittadella G; de Mel A; Dee R; De Coppi P; Seifalian AM
    Artif Organs; 2013 May; 37(5):423-34. PubMed ID: 23551257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique.
    Vaz CM; van Tuijl S; Bouten CV; Baaijens FP
    Acta Biomater; 2005 Sep; 1(5):575-82. PubMed ID: 16701837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin: a natural biodegradable scaffold in vascular tissue engineering.
    Shaikh FM; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Cells Tissues Organs; 2008; 188(4):333-46. PubMed ID: 18552484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds.
    Muylaert DE; Fledderus JO; Bouten CV; Dankers PY; Verhaar MC
    Heart; 2014 Dec; 100(23):1825-30. PubMed ID: 25053725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A; Colombus S; Krishnan VK; Krishnan LK
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agent-based modeling of porous scaffold degradation and vascularization: Optimal scaffold design based on architecture and degradation dynamics.
    Mehdizadeh H; Bayrak ES; Lu C; Somo SI; Akar B; Brey EM; Cinar A
    Acta Biomater; 2015 Nov; 27():167-178. PubMed ID: 26363375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering.
    Pankajakshan D; Krishnan V K; Krishnan LK
    Biofabrication; 2010 Dec; 2(4):041001. PubMed ID: 21076184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced cell therapies with and without scaffolds.
    Demirbag B; Huri PY; Kose GT; Buyuksungur A; Hasirci V
    Biotechnol J; 2011 Dec; 6(12):1437-53. PubMed ID: 22162495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning.
    Chung S; Ingle NP; Montero GA; Kim SH; King MW
    Acta Biomater; 2010 Jun; 6(6):1958-67. PubMed ID: 20004258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.