BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24583525)

  • 41. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater.
    Wang G; Wang D; Xu X; Yang F
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8757-65. PubMed ID: 23143532
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An innovative technology based on aerobic granular biomass for treating municipal and/or industrial wastewater with low environmental impact.
    Ramadori R; Di Iaconi C; Lopez A; Passino R
    Water Sci Technol; 2006; 53(12):321-9. PubMed ID: 16889269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aerobic granular sludge for simultaneous accumulation of mineral phosphorus and removal of nitrogen via nitrite in wastewater.
    Li Y; Zou J; Zhang L; Sun J
    Bioresour Technol; 2014 Feb; 154():178-84. PubMed ID: 24388958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SBBGR technology for reducing waste sludge production during plastic recycling process: Assessment of potential increase in sludge hazardousness.
    Altieri VG; De Sanctis M; Barca E; Di Iaconi C
    Sci Total Environ; 2023 Jul; 880():163388. PubMed ID: 37030375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions.
    Rasool K; Ahn DH; Lee DS
    Bioresour Technol; 2014 Jun; 162():373-8. PubMed ID: 24768910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.
    Franca RDG; Ortigueira J; Pinheiro HM; Lourenço ND
    Water Sci Technol; 2017 Sep; 76(5-6):1188-1195. PubMed ID: 28876260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes.
    Chon DH; Rome M; Kim YM; Park KY; Park C
    Water Res; 2011 Nov; 45(18):6021-9. PubMed ID: 21937073
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of an innovative biological treatment with physical or chemical disinfection for wastewater reuse.
    De Sanctis M; Del Moro G; Levantesi C; Luprano ML; Di Iaconi C
    Sci Total Environ; 2016 Feb; 543(Pt A):206-213. PubMed ID: 26584070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterisation of microbial flocs formed from raw textile wastewater in aerobic biofilm reactor (ABR).
    Ibrahim Z; Amin MF; Yahya A; Aris A; Umor NA; Muda K; Sofian NS
    Water Sci Technol; 2009; 60(3):683-8. PubMed ID: 19657163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater.
    Costa JG; Paulo AMS; Amorim CL; Amaral AL; Castro PML; Ferreira EC; Mesquita DP
    Chemosphere; 2022 Mar; 291(Pt 2):132773. PubMed ID: 34742770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment.
    Liu Y; Kang X; Li X; Yuan Y
    Bioresour Technol; 2015 Aug; 190():487-91. PubMed ID: 25777064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.
    Dries J
    Water Sci Technol; 2016; 73(4):740-5. PubMed ID: 26901715
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents.
    Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ
    Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor.
    Wei D; Shi L; Yan T; Zhang G; Wang Y; Du B
    Bioresour Technol; 2014 Nov; 171():211-6. PubMed ID: 25203228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A pilot investigation into membrane bioreactor using mesh filter for treating low-strength municipal wastewater.
    Wang YK; Sheng GP; Li WW; Yu HQ
    Bioresour Technol; 2012 Oct; 122():17-21. PubMed ID: 22595097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant.
    Świątczak P; Cydzik-Kwiatkowska A
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1655-1669. PubMed ID: 29101689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biodegradability of industrial textile wastewater - batch tests.
    Paździor K; Klepacz-Smółka A; Wrębiak J; Liwarska-Bizukojć E; Ledakowicz S
    Water Sci Technol; 2016; 74(5):1079-87. PubMed ID: 27642827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor.
    Wang SG; Liu XW; Zhang HY; Gong WX; Sun XF; Gao BY
    Chemosphere; 2007 Oct; 69(5):769-75. PubMed ID: 17617438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.
    Joshi DR; Zhang Y; Tian Z; Gao Y; Yang M
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8191-202. PubMed ID: 27221291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.