These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24583525)

  • 61. Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater.
    López-Palau S; Dosta J; Mata-Alvarez J
    Water Sci Technol; 2009; 60(4):1049-54. PubMed ID: 19700844
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Membrane bio-reactor for textile wastewater treatment plant upgrading.
    Lubello C; Gori R
    Water Sci Technol; 2005; 52(4):91-8. PubMed ID: 16235750
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Application of Integrated Fixed-Film Activated Sludge in a Conventional Wastewater Treatment Plant.
    Kuśnierz M; Domańska M; Hamal K; Pera A
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627522
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid start-up and performance of denitrifying granular sludge in an upflow sludge blanket (USB) reactor treating high concentration nitrite wastewater.
    Chen Z; Wang X; Chen X; Chen J; Gu X
    Biodegradation; 2018 Dec; 29(6):543-555. PubMed ID: 30141070
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characteristics of developed granules containing selected decolourising bacteria for the degradation of textile wastewater.
    Ibrahim Z; Amin MF; Yahya A; Aris A; Muda K
    Water Sci Technol; 2010; 61(5):1279-88. PubMed ID: 20220250
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.
    Ramteke LP; Gogate PR
    Environ Sci Pollut Res Int; 2016 May; 23(10):9712-29. PubMed ID: 26846248
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nitrification performance in a membrane bioreactor treating industrial wastewater.
    Dvořák L; Svojitka J; Wanner J; Wintgens T
    Water Res; 2013 Sep; 47(13):4412-21. PubMed ID: 23764592
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gross parameters prediction of a granular-attached biomass reactor by means of multi-objective genetic-designed artificial neural networks: touristic pressure management case.
    Del Moro G; Barca E; De Sanctis M; Mascolo G; Di Iaconi C
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5549-65. PubMed ID: 26573316
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Study on cultivation of aerobic granular sludge and its application in degrading lignin models in the sequencing batch biofilter granular reactor.
    Peng J; Lei L; Hou Y; Chen S
    Water Sci Technol; 2024 Jun; 89(11):2907-2920. PubMed ID: 38877621
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.
    De Sanctis M; Beccari M; Di Iaconi C; Majone M; Rossetti S; Tandoi V
    Bioresour Technol; 2013 Feb; 129():624-8. PubMed ID: 23313178
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Application of aerobic granular sludge in polishing the UASB effluent.
    Zhang LL; Zhang B; Huang YF; Cai WM
    Environ Technol; 2005 Dec; 26(12):1327-34. PubMed ID: 16372567
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Response of biodegradation characteristics of unacclimated activated sludge to moderate pressure in a batch reactor.
    Xu RX; Li B; Zhang Y; Si L; Zhang XQ; Xie B
    Chemosphere; 2016 Apr; 148():41-6. PubMed ID: 26802261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbiological and performance evaluation of sequencing batch reactor for textile wastewater treatment.
    Ogleni N; Arifoglu YD; Ileri R
    Water Environ Res; 2012 Apr; 84(4):346-53. PubMed ID: 22834223
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ATP content and biomass activity in sequential anaerobic/aerobic reactors.
    Chen H
    J Zhejiang Univ Sci; 2004 Jun; 5(6):727-32. PubMed ID: 15101110
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye.
    Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R
    Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Efficacy and mechanism of enhanced Sb(V) removal from textile wastewater using ferric flocs in aerobic biological treatment.
    Zhang S; Baig SA; Xu X
    Chemosphere; 2024 Jun; 357():141920. PubMed ID: 38636914
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluating the stabilisation degree of digested sewage sludge: investigations at four municipal wastewater treatment plants.
    Parravicini V; Smidt E; Svardal K; Kroiss H
    Water Sci Technol; 2006; 53(8):81-90. PubMed ID: 16784192
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Cultivation of aerobic granular sludge for simultaneous nitrification and denitrification in SBR system].
    Yang Q; Li X; Zeng G; Xie S; Liu J
    Huan Jing Ke Xue; 2003 Jul; 24(4):94-8. PubMed ID: 14551965
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.
    Kumar Singh N; Singh J; Bhatia A; Kazmi AA
    Water Sci Technol; 2016; 73(1):113-23. PubMed ID: 26744941
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microaerated UASB reactor treating textile wastewater: The core microbiome and removal of azo dye Direct Black 22.
    Carvalho JRS; Amaral FM; Florencio L; Kato MT; Delforno TP; Gavazza S
    Chemosphere; 2020 Mar; 242():125157. PubMed ID: 31698213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.