BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24583557)

  • 1. [Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow].
    Bedekovics J; Méhes G
    Orv Hetil; 2014 Mar; 155(10):367-75. PubMed ID: 24583557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stromal abnormalities in neoplastic bone marrow diseases.
    Dührsen U; Hossfeld DK
    Ann Hematol; 1996 Aug; 73(2):53-70. PubMed ID: 8774614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histopathology in the diagnosis and classification of acute myeloid leukemia, myelodysplastic syndromes, and myelodysplastic/myeloproliferative diseases.
    Orazi A
    Pathobiology; 2007; 74(2):97-114. PubMed ID: 17587881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines.
    Bock O; Höftmann J; Theophile K; Hussein K; Wiese B; Schlué J; Kreipe H
    Am J Pathol; 2008 Apr; 172(4):951-60. PubMed ID: 18349123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance and dynamics of myelofibrosis regarding hematopoietic reconstitution after allogeneic bone marrow transplantation in chronic myelogenous leukemia--a single center experience on 160 patients.
    Thiele J; Kvasnicka HM; Beelen DW; Zirbes TK; Jung F; Reske D; Leder LD; Schaefer UW
    Bone Marrow Transplant; 2000 Aug; 26(3):275-81. PubMed ID: 10967565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone marrow hyaluronan and reticulin in patients with malignant disorders.
    Sundström G; Hultdin M; Engström-Laurent A; Dahl IM
    Med Oncol; 2010 Sep; 27(3):618-23. PubMed ID: 19548126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biology of the bone marrow microenvironment and myelodysplastic syndromes.
    Rankin EB; Narla A; Park JK; Lin S; Sakamoto KM
    Mol Genet Metab; 2015; 116(1-2):24-8. PubMed ID: 26210353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bone Marrow Microenvironment and Myelodysplastic Syndromes--Review].
    Zhang GC; Wang HQ; Shao ZH
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Feb; 24(1):290-4. PubMed ID: 26913439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet-derived growth factor receptor β (PDGFRβ) immunohistochemistry highlights activated bone marrow stroma and is potentially predictive for fibrosis progression in prefibrotic myeloproliferative neoplasia.
    Méhes G; Tzankov A; Hebeda K; Anagnostopoulos I; Krenács L; Bedekovics J
    Histopathology; 2015 Nov; 67(5):617-24. PubMed ID: 25825163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Megakaryopoiesis and myelofibrosis in chronic myeloid leukemia after allogeneic bone marrow transplantation: an immunohistochemical study of 127 patients.
    Thiele J; Kvasnicka HM; Beelen DW; Flucke U; Spoer C; Paperno S; Leder LD; Schaefer UW
    Mod Pathol; 2001 Feb; 14(2):129-38. PubMed ID: 11235904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of myelofibrosis-derived fibroblasts.
    Castro-Malaspina H; Jhanwar SC
    Prog Clin Biol Res; 1984; 154():307-22. PubMed ID: 6382300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prognostic significance of a comprehensive histological evaluation of reticulin fibrosis, collagen deposition and osteosclerosis in primary myelofibrosis patients.
    Gianelli U; Fiori S; Cattaneo D; Bossi A; Cortinovis I; Bonometti A; Ercoli G; Bucelli C; Orofino N; Bulfamante G; Iurlo A
    Histopathology; 2017 Dec; 71(6):897-908. PubMed ID: 28710830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.
    Zahr AA; Salama ME; Carreau N; Tremblay D; Verstovsek S; Mesa R; Hoffman R; Mascarenhas J
    Haematologica; 2016 Jun; 101(6):660-71. PubMed ID: 27252511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective WNT signaling associates with bone marrow fibrosis-a cross-sectional cohort study in a family with WNT1 osteoporosis.
    Mäkitie RE; Niinimäki R; Kakko S; Honkanen T; Kovanen PE; Mäkitie O
    Osteoporos Int; 2018 Feb; 29(2):479-487. PubMed ID: 29147753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal stem cells in myeloproliferative disorders - focus on primary myelofibrosis.
    Selicean SE; Tomuleasa C; Grewal R; Almeida-Porada G; Berindan-Neagoe I
    Leuk Lymphoma; 2019 Apr; 60(4):876-885. PubMed ID: 30277128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Function and pathology of bone marrow stromal cells].
    Müller-Hermelink HK; Baumann I
    Verh Dtsch Ges Pathol; 1990; 74():93-105. PubMed ID: 1708640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STROMAL CHANGES IN LEUKAEMIC AND RELATED BONE MARROW PROLIFERATIONS.
    SANERKIN NG
    J Clin Pathol; 1964 Sep; 17(5):541-7. PubMed ID: 14207789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelofibrosis in cats with myelodysplastic syndrome and acute myelogenous leukemia.
    Blue JT
    Vet Pathol; 1988 Mar; 25(2):154-60. PubMed ID: 2834859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model.
    Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S
    J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding deregulated cellular and molecular dynamics in the haematopoietic stem cell niche to develop novel therapeutics for bone marrow fibrosis.
    Gleitz HF; Kramann R; Schneider RK
    J Pathol; 2018 Jun; 245(2):138-146. PubMed ID: 29570794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.