These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24583921)

  • 1. Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine-preliminary results of an experimental study.
    Polak K; Czyż M; Ścigała K; Jarmundowicz W; Będziński R
    J Mech Behav Biomed Mater; 2014 Jun; 34():165-70. PubMed ID: 24583921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain rate dependent properties of human craniovertebral ligaments.
    Mattucci SF; Moulton JA; Chandrashekar N; Cronin DS
    J Mech Behav Biomed Mater; 2013 Jul; 23():71-9. PubMed ID: 23665484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The denticulate ligament: anatomy and functional significance.
    Tubbs RS; Salter G; Grabb PA; Oakes WJ
    J Neurosurg; 2001 Apr; 94(2 Suppl):271-5. PubMed ID: 11302630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure properties of cervical spinal ligaments under fast strain rate deformations.
    Bass CR; Lucas SR; Salzar RS; Oyen ML; Planchak C; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jan; 32(1):E7-13. PubMed ID: 17202883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models.
    Mattucci SF; Cronin DS
    J Mech Behav Biomed Mater; 2015 Jan; 41():251-60. PubMed ID: 25457171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric and mechanical properties of human cervical spine ligaments.
    Yoganandan N; Kumaresan S; Pintar FA
    J Biomech Eng; 2000 Dec; 122(6):623-9. PubMed ID: 11192384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the mechanical response of damaged human cervical spine ligaments.
    Trajkovski A; Hribernik M; Kunc R; Kranjec M; Krašna S
    Clin Biomech (Bristol, Avon); 2020 May; 75():105012. PubMed ID: 32371284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loading rate effect on mechanical properties of cervical spine ligaments.
    Trajkovski A; Omerovic S; Krasna S; Prebil I
    Acta Bioeng Biomech; 2014; 16(3):13-20. PubMed ID: 25307779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament.
    McAfee PC; Cunningham B; Dmitriev A; Hu N; Woo Kim S; Cappuccino A; Pimenta L
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S176-85. PubMed ID: 14560189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain rate dependent properties of younger human cervical spine ligaments.
    Mattucci SF; Moulton JA; Chandrashekar N; Cronin DS
    J Mech Behav Biomed Mater; 2012 Jun; 10():216-26. PubMed ID: 22520433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile cervical facet capsule ligament mechanics: failure and subfailure responses in the rat.
    Lee KE; Franklin AN; Davis MB; Winkelstein BA
    J Biomech; 2006; 39(7):1256-64. PubMed ID: 15899488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The anatomical features of denticulate ligament in human fetuses.
    Elvan Ö; Kayan G; Aktekin M
    Surg Radiol Anat; 2020 Aug; 42(8):969-973. PubMed ID: 32193601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the cervical spine denticulate ligament using MRI volumetric sequence: Comparison between 1.5 Tesla and 3.0 Tesla.
    Seragioli R; Simao MN; Simao GN; Herrero CFPS; Nogueira-Barbosa MH
    J Neuroradiol; 2018 Mar; 45(2):147-151. PubMed ID: 29038025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure properties and damage of cervical spine ligaments, experiments and modeling.
    Trajkovski A; Omerović S; Hribernik M; Prebil I
    J Biomech Eng; 2014 Mar; 136(3):031002. PubMed ID: 24389891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity of the spinal cord, pia, and denticulate ligament in the dog.
    Tunturi AR
    J Neurosurg; 1978 Jun; 48(6):975-9. PubMed ID: 660249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic response of human cervical spine ligaments.
    Yoganandan N; Pintar F; Butler J; Reinartz J; Sances A; Larson SJ
    Spine (Phila Pa 1976); 1989 Oct; 14(10):1102-10. PubMed ID: 2588060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine.
    Dibb AT; Nightingale RW; Luck JF; Chancey VC; Fronheiser LE; Myers BS
    J Biomech Eng; 2009 Aug; 131(8):081008. PubMed ID: 19604020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study.
    Wolny R; Wiczenbach T; Andrzejewska AJ; Spodnik JH
    J Mech Behav Biomed Mater; 2024 Mar; 151():106404. PubMed ID: 38244422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histo-mechanical properties of the swine cardinal and uterosacral ligaments.
    Tan T; Davis FM; Gruber DD; Massengill JC; Robertson JL; De Vita R
    J Mech Behav Biomed Mater; 2015 Feb; 42():129-37. PubMed ID: 25482216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.