These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24583945)

  • 1. Short period of oxygenation releases latch on peat decomposition.
    Brouns K; Verhoeven JT; Hefting MM
    Sci Total Environ; 2014 May; 481():61-8. PubMed ID: 24583945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: the roles of peat type and land use.
    Brouns K; Verhoeven JT; Hefting MM
    J Environ Manage; 2014 Oct; 143():44-53. PubMed ID: 24837279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic decomposition rates in drained peatlands: Impact of botanical composition.
    Tolunay D; Kowalchuk GA; Erkens G; Hefting MM
    Sci Total Environ; 2024 Jun; 930():172639. PubMed ID: 38670365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of drought and air pollution on metal profiles in peat cores.
    Souter L; Watmough SA
    Sci Total Environ; 2016 Jan; 541():1031-1040. PubMed ID: 26473705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the concept of 'enzymic latch' on carbon in peatlands.
    Urbanová Z; Hájek T
    Sci Total Environ; 2021 Jul; 779():146384. PubMed ID: 33744584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porewater constituents inhibit microbially mediated greenhouse gas production (GHG) and regulate the response of soil organic matter decomposition to warming in anoxic peat from a Sphagnum-dominated bog.
    Song T; Liu Y; Kolton M; Wilson RM; Keller JK; Rolando JL; Chanton JP; Kostka JE
    FEMS Microbiol Ecol; 2023 Jun; 99(7):. PubMed ID: 37280172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.
    Heijmans MM; van der Knaap YA; Holmgren M; Limpens J
    Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens.
    Geurts JJ; Smolders AJ; Banach AM; van de Graaf JP; Roelofs JG; Lamers LP
    Water Res; 2010 Jun; 44(11):3487-95. PubMed ID: 20392472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on microbial communities, decomposition and methane production in deep peat deposits.
    Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW
    PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments.
    Tang R; Clark JM; Bond T; Graham N; Hughes D; Freeman C
    Environ Pollut; 2013 Feb; 173():270-7. PubMed ID: 23207497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of simulated drought on the carbon balance of Everglades short-hydroperiod marsh.
    Malone SL; Starr G; Staudhammer CL; Ryan MG
    Glob Chang Biol; 2013 Aug; 19(8):2511-23. PubMed ID: 23554284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions.
    AminiTabrizi R; Dontsova K; Graf Grachet N; Tfaily MM
    Sci Total Environ; 2022 Jan; 804():150045. PubMed ID: 34798718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems.
    Kim Y; Ullah S; Roulet NT; Moore TR
    Sci Total Environ; 2015 Apr; 511():381-92. PubMed ID: 25555258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can climate change explain increases in DOC flux from upland peat catchments?
    Worrall F; Burt T; Adamson J
    Sci Total Environ; 2004 Jun; 326(1-3):95-112. PubMed ID: 15142769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent high temperature and low precipitation reduce peat carbon accumulation.
    Bragazza L; Buttler A; Robroek BJ; Albrecht R; Zaccone C; Jassey VE; Signarbieux C
    Glob Chang Biol; 2016 Dec; 22(12):4114-4123. PubMed ID: 27081764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.
    Delarue F; Buttler A; Bragazza L; Grasset L; Jassey VE; Gogo S; Laggoun-Défarge F
    Sci Total Environ; 2015 Apr; 511():576-83. PubMed ID: 25590538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation.
    Brouns K; Eikelboom T; Jansen PC; Janssen R; Kwakernaak C; van den Akker JJ; Verhoeven JT
    Environ Manage; 2015 Feb; 55(2):360-72. PubMed ID: 25351830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stronger negative priming effect and lower basal respiration rates in nutrient-poor as compared to nutrient-rich forestry-drained peatland.
    Linkosalmi M; Lohila A; Biasi C
    Rapid Commun Mass Spectrom; 2023 Aug; 37(16):e9540. PubMed ID: 37194121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas emissions from Canadian peat extraction, 1990-2000: a life-cycle analysis.
    Cleary J; Roulet NT; Moore TR
    Ambio; 2005 Aug; 34(6):456-61. PubMed ID: 16201217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.