BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24584068)

  • 1. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles.
    Liang Q; Zhao D
    J Hazard Mater; 2014 Apr; 271():16-23. PubMed ID: 24584068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate.
    Zhang M; Pan G; Zhao D; He G
    Environ Pollut; 2011 Dec; 159(12):3509-14. PubMed ID: 21890253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles.
    An B; Liang Q; Zhao D
    Water Res; 2011 Feb; 45(5):1961-72. PubMed ID: 21288549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles.
    Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D
    Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles.
    Xiong Z; He F; Zhao D; Barnett MO
    Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y; Zhao D
    Water Res; 2007 May; 41(10):2101-8. PubMed ID: 17412389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles.
    Jin Y; Liu F; Tong M; Hou Y
    J Hazard Mater; 2012 Aug; 227-228():461-8. PubMed ID: 22703733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface rearrangement of nanoscale zerovalent iron: the role of pH and its implications in the kinetics of arsenate sorption.
    Baltazar SE; García A; Romero AH; Rubio MA; Arancibia-Miranda N; Altbir D
    Environ Technol; 2014; 35(17-20):2365-72. PubMed ID: 25145190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.
    Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R
    Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification.
    Li JS; Beiyuan J; Tsang DCW; Wang L; Poon CS; Li XD; Fendorf S
    Chemosphere; 2017 Sep; 182():31-39. PubMed ID: 28486153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles.
    Zheng M; Huang Z; Ji H; Qiu F; Zhao D; Bredar ARC; Farnum BH
    Sci Total Environ; 2020 Feb; 702():134997. PubMed ID: 31726340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.
    Tsang DC; Olds WE; Weber PA; Yip AC
    Chemosphere; 2013 Nov; 93(11):2839-47. PubMed ID: 24144464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of the effectiveness and impact of electrokinetic remediation for pyrene-contaminated soil.
    Xu S; Guo S; Wu B; Li F; Li T
    J Environ Sci (China); 2014 Nov; 26(11):2290-7. PubMed ID: 25458684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles.
    Gil-Díaz M; Alonso J; Rodríguez-Valdés E; Pinilla P; Lobo MC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.