BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24584068)

  • 21. Arsenate removal from underground water by polystyrene-confined hydrated ferric oxide (HFO) nanoparticles:effect of humic acid.
    Deng Y; Zhang Q; Zhang Q; Zhong Y; Peng P
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6861-6871. PubMed ID: 31879867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of a new class of stabilized apatite nanoparticles and applying the particles to in situ Pb immobilization in a fire-range soil.
    Liu R; Zhao D
    Chemosphere; 2013 Apr; 91(5):594-601. PubMed ID: 23336925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].
    Fu TF; Jia YG; Guo L; Liu XL
    Huan Jing Ke Xue; 2012 Nov; 33(11):3922-6. PubMed ID: 23323426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.
    Gong Y; Wang L; Liu J; Tang J; Zhao D
    Sci Total Environ; 2016 Aug; 562():191-200. PubMed ID: 27100000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sorption kinetics model for arsenic adsorption to magnetite nanoparticles.
    Shipley HJ; Yean S; Kan AT; Tomson MB
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1053-62. PubMed ID: 19921525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes.
    Wang Y; Morin G; Ona-Nguema G; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2011 Sep; 45(17):7258-66. PubMed ID: 21809819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid.
    Mak MS; Rao P; Lo IM
    Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: investigations for immobilization potentials.
    Hashimoto Y; Taki T; Sato T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):583-90. PubMed ID: 19337921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles.
    Liu R; Zhao D
    Water Res; 2007 Jun; 41(12):2491-502. PubMed ID: 17482234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple kinetic Langmuir modeling to predict the environmental behaviour of As(v) in soils.
    van Elteren JT; Slejkovec Z; Arčon I; Beeston MP; Pohar A
    J Environ Monit; 2011 Jun; 13(6):1625-33. PubMed ID: 21547296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption and desorption of arsenate on sandy sediments from contaminated and uncontaminated saturated zones: Kinetic and equilibrium modeling.
    Hafeznezami S; Zimmer-Faust AG; Dunne A; Tran T; Yang C; Lam JR; Reynolds MD; Davis JA; Jay JA
    Environ Pollut; 2016 Aug; 215():290-301. PubMed ID: 27218893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles.
    Mohmood I; Lopes CB; Lopes I; Tavares DS; Soares AM; Duarte AC; Trindade T; Ahmad I; Pereira E
    Sci Total Environ; 2016 Jul; 557-558():712-21. PubMed ID: 27039062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equilibrium and kinetics study on removal of arsenate ions from aqueous solution by CTAB/TiO
    Gogoi P; Dutta D; Maji TK
    J Water Health; 2017 Feb; 15(1):58-71. PubMed ID: 28151440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of natural organic matter on As transport and retention.
    Sharma P; Rolle M; Kocar B; Fendorf S; Kappler A
    Environ Sci Technol; 2011 Jan; 45(2):546-53. PubMed ID: 21142173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles.
    Liu R; Zhao D
    Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenate sorption by hydrous ferric oxide incorporated onto granular activated carbon with phenol formaldehyde resins coating.
    Zhuang JM; Hobenshield E; Walsh T
    Environ Technol; 2008 Apr; 29(4):401-11. PubMed ID: 18619145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenate adsorption on three types of granular schwertmannite.
    Dou X; Mohan D; Pittman CU
    Water Res; 2013 Jun; 47(9):2938-48. PubMed ID: 23566332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles.
    Yang W; Kan AT; Chen W; Tomson MB
    Water Res; 2010 Nov; 44(19):5693-701. PubMed ID: 20598730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.